TKA ${ }^{\circ}$

Knowledge Organisers

Year 7

Year 7 Term 2 Maths Knowledge Organiser

Probability can be a fraction, decimal or percentage.
Probability is always a value between 0 and I

Keywords

Set: Collection of things
Element: Each item in a set is called an element Mutually exclusive: Events that do not occur at the same time
Probability: Likelihood of an event happening Bias: a built-in error that makes all values wrong (unequal) by a certain amount, eg a weighted dice Fair: There is zero bias, and all outcomes have an equal likelihood
Random: something happiness by chance and is unable to be predicted.

GOOD TO KNOW..

HOW TO....

The table shows the probability of selecting a type of chocolate

Dark	Milk	White
Q.15	0.35	

$\mathrm{P}($ white chocolate $)=1-0.15-0.35=0.5$

Probability $=$ number of times events happen total number of possible scale, each interval value is $1 / 5$

The universal set has this symbol ξ - this means EVERYTHING in the set.
$\xi=\{$ the numbers between I and 50 inclusive $\}$

Year 7 Term 2 Maths Knowledge Organiser

Algebra 1

TKA ${ }^{\circ}$

Keywords

Expression: a maths sentence with a minimum of two numbers and at least one Maths operation (no equals sign)
Linear: the difference between two terms increases or decreases by the same value each time
Output: the number / expression that comes out of a function
Formula: a fact or rule that is expressed in terms of mathematical symbols
Function: a relationship that instructs how to get from an input to an output
Integer: A whole number that is positive or negative Factorise: To factorise an expression fully, means to put it in brackets by taking out the highest common factors
Inverse: the operation that undoes what was done by the previous operation (the opposite operation) Equation: a formula that expresses the equality of 2 expressions by connecting them with the equals sign $=$

GOOD TO KNOW...

$5+5+5$	$y+y+y+y$	$20-h$
3×5	$y \times 4$	$\frac{20}{h}$
5×3	$4 \times y$	4

Ths box aves the calcuation nstruction

To find the input from the output Use the INVERSE operation

Two step function machines

For the nout use the INERSE operations

HOW TO....

Two step function machines (algebra)

Find functions from expressions

Sometmes it heps to try to explan the expression in word - and consider what has happened to the rput

Substitution into an expression

Data 2
TKA ${ }^{\text {Ko }}$

Number 2

CORE

- Rounding - if 5 or more round up, if less than 5 stays the same e.g. 5.6 to the nearest whole number is 6 .
- When multiplying and dividing decimals by powers of ten, set up your decimal in a place value table and move the digits (to the left if multiplying or to the right if dividing) by the amount of zeros in the power of ten e.g. 3.2×10 means we move each digit one space to the left so the answer is 32 .

Keywords

Rounding: making a number simpler but keeping its value close to what it was
Estimate: a way of approximately calculating an answer
Approximate: A result that is not exact, but close enough to be used
Multiples: the product result of one number multiplied by another number
Order of Magnitude: If one amount is an order of magnitude larger than another, it is ten times larger than the other
Decimal: a number with a decimal point used to separate ones, tenths, hundredths etc
Length: how far from end to end
Mass: mass is often called weight
but mass and weight are not the same
Capacity: the amount a container or something can hold

HOW TO....
addition Subtraction with decimas Multipl/ Divide by poners
 of 10 is commidave
$\div 10$ then $\div 10 \longrightarrow \div 100$

- 3.6
1.6

Compaing decinas When lye lagest of 0.3 and 0.23 ?

$0.3>0.23$
There ae more contos n ite fivtec catem to the bet
0.30

023

Compang the wides both with the some number of decand ploces is andter way to compore the number of temits. and hundresths

Year 7 Term 3 Maths Knowledge Organiser

Shape 1
TKAT ${ }^{\text {º }}$

CORE

Face: the flat surface of a solid object
Edge: the line that joins corners or surfaces of a shape
Vertice: the points where two or more line segments or edges meet (like a corner)
Plan: a scale drawing showing a 3D shape when it is looked at from above
Elevation: the view of a 3D shape when it is looked at from the side or from the front
Perimeter: The distance around a two-dimensional shape. To calculate the perimeter, add the length of all sides of the shape.
Area: the total space taken up by a flat (2-D) surface or shape of an object.
Regular: a regular shape has all sides equal and all angles equal
Irregular: an irregular shape has at least one side different to the other sides, or angle different to the other angles
Surface area: the total area of all of the faces Polygon: a flat two-dimensional shape with straight sides that are fully closed
Compound or composite shape:s any shape that is made up of two or more geometric shapes Parallel: Lines on a plane that never meet Parallelogram: a quadrilateral with opposite sides parallel and equal

GOOD TO KNOW...

$P=a+b+c+d$
$P=17+8+17+8$ $\mathrm{P}=50 \mathrm{ft}$
$P=2 \times$ (length + width $)$
$P=2 \times(17+8)$
$P=2(25)$
$P=50 \mathrm{ft}$

HOW TO....

What is the volume of the cube?

2 cm
$2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}=8 \mathrm{~cm}^{3}$

Area of squares and rectangles

Volume of cuboid
$=$ length \times width \times height
$=5 \times 8 \times 13$
$=520 \mathrm{~cm}^{3}$

CORE

Integer: A whole number that is either positive or negative.
E.g. 3, $100,-12$ are all integers.

Significant figure:A digit that gives meaning to a number. The most significant digit (figure) in an integer is the number on the left. The most significant digit in a decimal fraction is the first non-zero number after the decimal point. E.g. 320 rounded to I s.f. would be 300 .
Fraction: how many parts of a whole we have. E.g. $1 / 2$ is a fraction.
Place value: the numerical value that a digit has decided by its position in the number.
Placeholder: a number that occupies a position to give value
Numerator: the number above the line on a fraction. The top number. Represents how many parts are taken Denominator: the number below the line on a fraction.
The number represent the total number of parts..
Whole: a positive number including zero without any decimal or fractional parts
Unit fraction: a fraction where the numerator is one and denominator a positive integer.
Dividend: the amount you want to divide up
Divisor: the number that divides another number
Quotient: the answer after we divide one number by another. e.g. dividend \div divisor $=$ quotient
Factors: integers that multiply together to get the original value. E.g. 3 and 4 are both factors of I2.
Scale factor: the multiple that increases/ decreases a shape in size

GOOD TO KNOW...

Mulipling non-unt fractions

HOW TO....

Round to I significant figure

370 to I signicicant figure is 400
37 to I signficant fiare is 40
37 to I sgenficant figure is 4
 zeronumber
0.37 to I significant figure is 04

000000037 to I significant figure is 00000004

Froctions and decimas

Year 7 Term 4 Maths Knowledge Organiser

Percent: parts per 100 - written using the \% symbol Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals
Equivalent: of equal value
Term: a single number or variable. E,g, 3, x, 5x are all terms.
Index form: A system of writing very big or very small numbers
$5 \times 5 \times 5 \times 5=5^{4}$
$a \times a \times a \times a \times a \times a=a^{6}$
Negative indice: A power (indice) below zero
Standard form: A system of writing very big or very small numbers
300000 can be written as 3×10^{5}
0.035 can be written as 3.5×10^{-2}

Power: The exponent - or the number that tells you how many times to use the number in multiplication E.g. the number 4^{5} shows that 5 is the power

Exponent: The power - or the number that tells you how many times to use the number in multiplication Surface area: Area of the faces of a 3d shape. Surface area is measured in units ${ }^{2}$
Volume: is the amount of space a 3D shape takes up. Volume is measured in units ${ }^{3}$.
O.

HOW TO....

This cuboid is made from 24 unit cubes. Its volume is
Volume $=$ length \times width \times height
Volume $=2 \times 4 \times 3$
Volume $=24 \mathrm{~cm}^{3}$
Describing number sequences term-to-term rule
A sequence is a set of numbers
described by a rule.

$V=\frac{(b \times h)}{2} \times H$

$\mathrm{V}=300 \mathrm{~cm}^{3}$

Total Surface Area
$=234 \mathrm{~cm}^{2}$ $=234 \mathrm{~cm}^{2}$

Year 7 Term 5 Maths Knowledge Organiser

Shape 2
TKAT ${ }^{\text {º }}$

CORE	GOOD TO KNOW...	HOW TO...
- A parallelogram has: - Two pairs of opposite sides that are equal in length. - Two pairs of parallel sides - Two pairs of equal opposite angles - Diagonals that bisect each other. - No reflection symmetry - Rotational symmetry of order 2 area of parallelogram $=$ base length \times perpendicular height, $A=b h$	Common misconceptions - Using incorrect units for the answer A common error is to forget to include squared units when asked to calculate area. - Forgetting to convert measures to a common unit Before calculating the area of a trapezium, pupils must look at the units given in the question. If different units are given e.g. length $=4 \mathrm{~m}$ and width $=3 \mathrm{~cm}$ pupils must convert them either both to cm or both to m .	Find the area of the parallelogram. $\mathrm{A}=\mathrm{bh}$ Substitute given values into the formula. $\begin{aligned} & A=5 \times 12 \\ & A=60 \mathrm{~m}^{2} \end{aligned}$

A trapezium has

One pair of unequal parallel sides.

- Diagonals that are not equal in length
- No reflection symmetry

No rotational symmetry

$$
\text { Area }_{\text {Trapezium }}=\frac{a+b}{2} \times h
$$

Where a and b are the parallel sides

Where h is equal to the perpendicular height of the trapezium
The area of compound shapes (also known as the area of composite shapes) is the amount of space inside a shape composed of basic shapes put together. It is measured in units squared ($\mathrm{cm}^{2}, \mathrm{~m}^{2}, \mathrm{~mm}^{2}$ etc.).

Compound shapes can also be called composite shapes.
To find the area of compound shapes we must divide the compound shape into basic shapes and find the area of each of the basic shapes and add them together.

Year 7 Term 5 Maths Knowledge Organiser

Number 4

CORE	GOOD TO KNOW...	HOW TO...
Key Words Ratio and proportion is an area of mathematics which deals with the relationship between two or more quantities. Ratio: used to compare two or more numbers Highest Common Factor: Is the greatest number that can be divided into two of more numbers without	Common misconceptions - Ratio written in the wrong order A common error is to write the parts of the ratio in the wrong order. E.g. The number of dogs to cats is given as the ratio $12: 13$ but the solution is incorrectly written as $13: 12$.	Simplify: $\left(\begin{array}{cc} 16: 20 \\ \div 4 & \div 4 \\ 4: 5 \end{array}\right)$

that can be divided into two of more numbers without a remainder
A ratio in its simplest form: has been divided by the highest common factor of all the numbers in the ratio
Equivalent ratios: two ratios are considered equivalent if one can be expressed as a multiple of the other
Dividing ratios is a way of sharing a quantity in given parts of a ratio.
Ratio to fraction: When we express a ratio as a fraction, we need to know either the value of each part of the ratio, the sum of these will be or denominator Proportion is a type of relationship between two variables
Direct proportion When two quantities are in direct proportion, as one increases the other does too. Unitary method: uses a ratio is in the form I:n
E.g.

The ratio $2: 3$ is incorrectly expressed as the fraction $\frac{2}{3}$ and rather than the correct answer of $\frac{2}{5}$.

This is a misunderstanding of the sum of the parts of the ratio. The sum of all of the parts of the ratio gives us the denominator of the fraction.

The unitary method can be used to find the best value.

$£ 20$ is divided between Ann and Jim in the ratio 3 : 2
How much money does each get?
$3+2=5$ parts

Ann Jim
£12 £8
$£ 20 \div 5=£ 4$

How much of each ingredient will be needed to make 50 fingers?

Shape 3
TKAT ${ }^{\circ}$

Year 7 Term 6 Maths Knowledge Organiser

CORE	GOOD TO KNOW...
Key Words	A draw an ordered stem and leaf diagram' question is usually worth 3 marks:
Numerical Data: Data that only takes numbers	1) All the data is ordered
2) You haven't missed any values	

The first digit(s) form the stem
The last digit forms the leaf

Scatter graphs show the relationship between two sets of data, or two variables.

The relationship is described using correlation.

There are three main types of correlation

the other increases)

Negative (as one increases, the other decreases)

o pattern o relationship)

Line of best fit a straight line that goes through the middle of your points used to make estimates of other results..

Correlation can also be weak or strong

Strong
(all points closely follow a straight line)

HOW TO....

Draw a stem and leaf diagram:

(1) Order the numbers from smallest to largest.

35,	50,	37,	44,	53,	41,	39,	45,	48,

becomes

2 Split the numbers into two parts, the last part must be one digit only.
The number in our data will split into tens and units so 35 will be 3 and 5 (3 represents 30 and 5 is 5 units)

3 Put the values into the diagram and create a key.

Key : 3	5 represents 35
3	579
4	$\begin{array}{lllll}1 & 4 & 5 & 8\end{array}$
5	$036 \npreceq$

Use a scatter diagram to make estimations

Year 7 Term 6 Maths Knowledge Organiser

Shape 4

TKATM

CORE

GOOD TO KNOW...

HOW TO....

Key Words

Coordinates are locations of points on a grid
Midpoint - is the halfway point between two other coordinates
2D shapes are flat shapes which only have two dimensions; length and width
A line of symmetry shows where one side of a shape is the reflection of another
The order of rotational symmetry of a shape is how many times the shape fits onto itself during a 360° turn
Transformations change the size and/or the position of a shape. There are 4 transformations:
Reflection flips an object. The size and shape stay exactly but the shape is mirrored.
Rotation turns an object. The size and shape stay exactly the same but the orientation changes
Translation moves an object, the shape stays the same.
Enlargement changes the size of an obect
Scale factor Indicates how many times bigger or smaller one shape is than another.
Congruent shapes are shapes that are exactly the same shape and size.
Similar shapes are the same shape, but different sizes.
Object The original shape before a transformation has
The \boldsymbol{x}-axis and \boldsymbol{y}-axis meet at the origin, $(0,0)$ where

- the x-axis (the horizontal axis) is positive to the right of the origin, and negative to the left of the origin;
- the y-axis (the vertical axis) is positive above the origin, and negative below the origin.

1. Reflection e.g.

2. Translation e.g.

Reflections,Rotations, and Translations produce images that are congruent

These two triangles are congruent.

Enlargements produce images that are similar

We can use column vectors to describe translations.

TKA ${ }^{\circ}$

Knowledge Organisers

Year 8

Year 8 Term 1 Maths Knowledge Organiser

Shapes 1

TKA ${ }^{\text {º }}$

CORE	GOOD TO KNOW...	HOW TO....

- 2D - a 2 dimension shape (flat, e.g. square, circle)
- 3D - a 3 dimensional shape (solid, e.g. cube, cylinder)
- Volume - the space inside a 3D shape measured in cubed units
- Face - the flat surface 2D shapes which form a 3D solid
- Vertex/vertices - the corners of a 3D shape
- Edge - the lengths connecting the corners of a 3D shape
- Area - the space inside a 2D shape measured in squared units
- Area of a rectangle/square $=$ length \times width
- Area of a triangle $=\underline{\text { base } \times \text { height (perpendicular) }}$ 2
- Volume of a cube/cuboid $=$ length \times width \times height
- Volume of a prism = area of cross section (front face) x length
- \quad Square has 4 equal sides
- Rectangle has 2 pairs of equal sides
- Triangle has 3 sides
- An equilateral triangle has three equal sides and three equal angles of 60°
- An isosceles triangle has two equal sides where the two angles at the base of the triangle are equal
- Prism - a 3D shape which has the same cross section throughout, e.g. cuboid, cylinder, triangular prism)

GOOD TO KNOW...

Plan is the view of a 3D shape when looked at from above

- Elevation is the view of a 3D shape when looked at from the front or the side

Lcm

- Area of a trapezium $=1 / 2 \times(a+b) \times h$ where h is the height and a and b are the widths on the top and bottom
- Area of a parallelogram $=$ base \times vertical height
- \quad Area of a circle $=\pi r^{2}$
- The circumference of a circle is the perimeter distance around the edge
- \quad Circumference of a circle $=2 \pi r$ or πd
- Surface area is the area of all the faces of a 2D shape added together
- Perpendicular - at an angle of 90 degrees to a given line
- A compound shape is a shape made up of two or more 2 D shapes put together to make a new shape

Area $=\frac{1}{2} \times$ base \times perpendicular height $=\frac{1}{2} \times 11 \times 10=55 \mathrm{~cm}^{2}$

4 cm

This cuboid is made from 24 unit cubes.
Its volume is
Volume $=$ length \times width \times height
Volume $=2 \times 4 \times 3$
Volume $=24 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\pi \times 3^{2} \\
& =9 \pi \mathrm{~cm}^{2} \\
& =28.3 \mathrm{~cm}^{2}(1 . d . p)
\end{aligned}
$$

CORE

- Recall times tables accurately e.g $7 \times 8=56$ or $9 \times 9=81$
- For order of operations we use BIDMAS

Brackets

Indices

D/M divide and multiply
A/S add and subtract

- A negative number is less than zero

Negative $(x / \div$) negative gives a positive answer
Negative (x / \div) positive gives a negative answer
(+-) means subtract - (--) means add

- Understand place value - Place value is the value of each digit in a number. For example, the 5 in 350 represents 5 tens, or 50 ; however, the 5 in 5,006 represents 5 thousands, or 5,000

$$
\begin{gathered}
\text { TH H T U. } 1 / 10 \\
3789.6
\end{gathered}
$$

- Rounding - if 5 or more round up, if less than 5 stays the same

Keywords:

- Integer - A whole number ie. - I or 4
- Square number - The result of multiplying an integer by itself ie. 3×3=9
- Factor - a number that divides a number without a remainder ie. 5 is a factor of 10 .
- Multiple - The times tables of a number ie. 8 is a multiple of 2
- Prime number - A number that has only two factors, I and itself ie. II is a prime number.
- Decimal place - The amount of numbers after a decimal point. It is normally written as d.p.
- Significant figure - The significant digits of a number are the digits that have meaning or contribute to the value. We start counting significant figures from the first non-zero figure. le. 0.086, the 8 is the first significant figure. It may be written as s.f.

GOOD TO KNOW...

- Cube numbers - A number multiplied by itself, then multiplied by itself again ie. $2 \times 2 \times 2=8$
- \quad Square root - Is the inverse of a square number ie. the square root of 16 is 4 as $4 \times 4=16$
- Cube root - Is the inverse of a cube number ie.
the cube root of 27 is 3 as $3 \times 3 \times 3=27$
- Alternate meanings
a. Multiply is the same as times
b. Subtract is the same as take away
c. Product means multiply
d. Sum means add
- Inverse operations mean do the opposite
a. The inverse of add is subtract
b. The inverse of multiply is divide
- $\quad I$ is not a prime number as it only has one factor.

2 is the only even prime number.
HOW TO....
$57 \div 3=19$

How many times does 3 go into 27 ? It goes into 27 nine times and has no remainder.

- To find the HCF of two or more numbers:
a. List all factors of both numbers
b. Find the highest factor that appears in both lists
- LCM - lowest common multiple
- To find the LCM of two or more numbers:
a. List multiples of both numbers
b. Repeat until you find the lowest common multiple
- Estimate - Rounding of a number to make a calculation easier ie. we can estimate $99.6 \div 7.2$ to

| | 3 |
| :--- | :--- | :--- |
| 4 | 1 |

- 237

106 be $100 \div 10 \approx 10$

- Round 4953 to 2 s.f.

3) 15

5000
(2)

- A letter represents an unknown variable
- When multiplying powers add the powers

$$
\text { e.g. } 6^{4} \times 6^{7}=6^{11} \text { OR a }{ }^{3} \times a^{5}=a^{8}
$$

- When dividing powers subtract the powers

$$
\text { e.g. } 6^{8} \div 6^{5}=6^{3} \text { OR a }^{9} \div a^{5}=a^{4}
$$

- When in brackets multiply the powers

$$
\text { e.g. }\left(8^{4}\right)^{3}=8^{12} O R\left(x^{5}\right)^{2}=x^{10}
$$

- Inverse - opposite, e.g. inverse of add is subtract
- Term - a number of letter on its own e.g. 2 is a term, x is a term
- Expression - Numbers, symbols and operators grouped together e.g. $2 x+3$ is an expression
- Indices - The power or exponent which is raised to a number or a variable. For example, $2^{4}, 4$ is the index of 2 and means $2 \times 2 \times 2 \times 2$

HOW TO....

Collecting Like

Ex $3 x+y-2 x+4 y \equiv x+5 y$

Laws of indices

$$
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m \times n}
\end{aligned}
$$

Year 8 Term 2 Maths Knowledge Organiser

CORE $|$| GOOD TO KNOW... |
| :---: | :---: |

Keywords

Pie chart: This is a type of graph in which a circle is divided into sectors that each represents a proportion of the whole.
Mean: Is the average of all the numbers. You add all the numbers up and divide them by the quantity of numbers.
Median: Is the middle number, when put in order of size. If there are two numbers in the middle, you add both together and divide by 2.
Mode: Is the most common number. This is the number that appears the most.
Range: Is the difference between the largest and smallest numbers in a set of data.
Modal value: The modal value of a set of data is the most frequently occurring value. It's a measure of central tendency that tells you the most popular/common choice of the sample.
Estimated mean: This is used to estimate the mean from a grouped data
Two-way table: It is a way of sorting data so that the frequency of each category can be seen quickly and easily.

Querages from lists

The Mean

a measure of average to find the central tendency..
a tupical vaive that represents the data

$24,8,4,11,8$

Fnd the sum of the data ladd the vaises

55
Divide the overal total by how mary pieces of data you have

$$
55 \div 5 \quad \text { Mean }=11
$$

The Mode (The modal value)
This is the number OR the tem that occurs the most (it does not have to be numerical)

> This can sit be cecier ift the dita is adered fist

The Median

The vaive in the center in the midale) of the data

24, 8, 4, 11, 8 ,

Puthe ditanader $4,8,8,1,24$ Fnd the wie in the made $4,8,8,11,24$

Median $=8$

 NOTEF f there s ro smue mide vale fhas the mean of the tho
Range

Soread of the vales

Dfference between the biggest and smallest
$\begin{array}{llll}3 & 9 & 8 & 12\end{array}$
Range: Biggest value - Smallest value $12-3=9$
Range $=9$

HOW TO....

Draw and interpret Pie Charts Remember a circe has 360°

Type of pet	Dog	Cat	Hamster
Frequency	32	25	3

$\frac{32}{60} \times 360=192^{\circ} \quad \begin{aligned} & \text { Use a protracto to draw } \\ & \text { This i } 122^{\circ}\end{aligned} \quad$ Represents quantidative $\begin{aligned} & \text { discrete data }\end{aligned}$

Treerwere bopeope cosedin this sney Todatreageroce

Year 8 Term 2 Maths Knowledge Organiser

Number 2
TKAT ${ }^{\circ}$
(

Keywords

Whole numbers: Are numbers that are not fractions or decimals and includes zero. Another name for whole number is an integer.
Rounding: To make a number simpler but keeping its value close to what it was.
Decimal number: Is a way of writing a number that is not whole. Decimal numbers fall between two whole numbers. For example, 12.5 is a decimal number between 12 and 13 . Significant figure: A digit that gives meaning to a number. The most significant digit (figure) in an integer is the number on the left. The most significant digit in a decimal fraction is the first non-zero number after the decimal point.
Estimation: Is a way of approximately calculating an answer to check its accuracy. A calculator is not needed when estimating, even with large numbers or decimals.
Exchange rates: This is the price of one currency expressed in terms of another currency. For example, $£ \mathrm{I}=$ £l.13 or $£ 1=\$ 1.20$.
Time
There are 60 seconds in a minute
There are 60 minutes in an hour.
There are 24 hours in a day.
15 minutes can be expressed as 0.25 or $1 / 4$ of an hour 30 minutes can be expressed as 0.5 or $1 / 2$ of an hour. 45 minutes can be expressed as 0.45 or $3 / 4$ of an hour 6 minutes can be expressed as 0.1 or $1 / 10$ of an hour.

GOOD TO KNOW...

Decimal places are positions of the digits to the right of a decimal point
E.g.

Estimation is when we use approximate values in a calculation to find an approximate answer

When we estimate the numbers in a calculation, we usually round to 1 significant figure

E.g.

Estimate $5.7 \times 2.3 \rightarrow 5.7$ rounded to 1.s.f is $6 \rightarrow$ So $5.7 \times 2.3 \approx 6 \times 2=12$

$$
2.3 \text { rounded to } 1 . \text { s. } . \text { is } 2 \quad 6 \times 2=12
$$

$$
\begin{array}{lll}
2.67 & 2.65 & 2.70
\end{array}
$$

Put these decimals in ascending order

HOW TO....

Exchange Rates

When moking estimutes it s aso sefefi to use estimades to check for solition is recsosonble
"Significant" means "important". The first significant figure (or significant digit) of a number is the most important digit which expresses the size of the number; it is the first non-zero digit

E.g.

Year 8 Term 3 Maths Knowledge Organiser

Algebra 2

TKAT ${ }^{\circ}$

CORE \quad GOOD TO KNOW... \quad HOW TO....

Keywords

Function: A relationship that instructs how to get from an
input to an output
Input: The number/symbol put into a function.
Output: The number/expression that comes out of a function.
Inverse: The operation that undoes what was done by the previous operation (the opposite operation).
Substitute: To replace one variable with a number or new variable.
Expression: A maths sentence with a minimum of two numbers and at least one maths operation without an equal sign.
Equation: This states that two things are equal. It will have an equals sign = to signify this.
Inequality: This compares two variables showing if one is greater than, less than or equal to another.
Expand: This means to multiply each term in the bracket by the expression outside the bracket.
Factorise: Is the reverse process of expanding brackets. To factorise an expression fully, means to put it in brackets by taking out the HCF of the terms in the expression. Variable: A symbol for a number we don't know yet.
Solution: A value we can put in place of a variable that makes the equation true.
Term: A single number or variable
Formula: A rule written with all mathematical symbols, eg area of a rectangle base x height.

This includes the integer values $0,12,3$

Solve the following equations

Balancing method	Function machine method
$8 \mathbf{a}-5=11$	$8 \mathbf{a}-5=11$
$+5+5$	$\mathbf{a} \rightarrow \times 8 \rightarrow-5 \rightarrow 11$
$8 \mathbf{a}=16$	$2 \leftarrow+8 \leftarrow+5 \leftarrow 11$
$+8+8$	$\mathbf{a}=2$

Expanding
$2(g+4)$
$=2 g+8$
Multiply in

Factorising
$3 x+6 \equiv 3(x+2$

Expanding brackets

Form and solve inequalities

Two more than treble my
number is greater than II

Form

Solve

Year 8 Term 3 Maths Knowledge Organiser

Shape 2
TKATM

CORE

Angles are measured in degrees
Angles on a straight line add up to 180
A right angle is 90 degrees
Angles around a point add up to 360
Angles in a triangle add up to 180
Angles in a quadrilateral add up to 360
Exterior angles add up to 360
Vertically opposite angles are equal
Co-interior angles add up to 180
Alternate angles are equal
Corresponding angles are equal
Parallel - Two straight lines equidistant apart which never meet

Polygon - a 2D shape made up of straight lines Equilateral triangle - a triangle with 3 equal angles and sides Isosceles triangle - a triangle with 2 equal angles and sides Right angled triangle - a triangle with one right angle
Interior angle - an angle inside a polygon
Exterior - an angle outside a polygon
Formula for sum of interior angles
$(\mathrm{n}-2) \times 180$

Exterior angles

$360 \div$ number of sides of the shape

HOW TO....

Sum of exterior angles
 Exerefr cadesalad up to 360°

are the ande formed from the stragithe exterson at the sole of the shape

Missing angles in regular polygons

$$
\begin{aligned}
& \text { Extenor angle }=360 \div 8=45^{\circ} \\
& \text { htenor ange }=\frac{(8-2) \times 180}{8}=\frac{6 \times 180}{8}=135^{\circ}
\end{aligned}
$$

Exterior angles in regular poigoors $-360^{\circ} \div$ number of sides

Iterior angles in reguler polygons - (humber of sides -21×180 rumber of sides

Year 8 Term $3 / 4$ Maths Knowledge Organiser

Number 3

TKAT ${ }^{\text {º }}$

Year 8 Term 4 Maths Knowledge Organiser

Data 2
TKAT ${ }^{\circ}$

CORE	GOOD TO KNOW...	HOW TO....
Outcomes: the result of an event that depends on probability E.g. The outcome of rolling a dice would be landing on a two. Probability: the chance that something will happen Set: a collection of objects. Event: the outcome of a probability - a set of possible outcomes E.g. rolling a dice would be an event Biased: a built in error that makes all values wrong by a certain amount. Union: Notation ' U ' meaning the set made by comparing the elements of two sets Mutually exclusive events are events that can't both happen Probability: concerning numerical descriptions of how likely an event is to occur Experimental probability: Experimental probability is the ratio of the number of times an event occurs to the total number of trials or times the activity is performed. $\begin{aligned} & P(A)+P(B)=1 \\ & P(\operatorname{not} A)=1-P(A) \end{aligned}$ Theoretical probability: the number of favorable	Construct sample spoce diagams Sample space dayarars provide a systemdic way to dsplay alcomes from everts This is the set notation to ist the In between the $\}$ are outcomes Sa the possble outcomes $S=\{H, 2 H, 3 H, 4 H, 5 H, 6 H, ~ T T, 2 T, 3 T, 4 T, 5 T, 6 T\}$	Probabilty from two-way tables Cor Bis Wak Todd $P\left(\right.$ Gir wak to school) $=\frac{21}{100}$ Bass 15 24 14 53 Girs 6 20 21 47 Todd 21 44 35 100

The Probability of an Event NOT Occuring

$$
P(\operatorname{not} A)=1-P(A)
$$

Ex: The probability of NOT tossing a 88 of a die.
 $A=\{\because \in\}$ (Event)
$P(A)=\frac{1}{6} \quad$ (Probability of Event A) therefore $P(\operatorname{not} A)=1-P(A)=1-\frac{1}{6}=\frac{5}{6}$

Year 8 Term 4 Maths Knowledge Organiser

Number 4

CORE \quad GOOD TO KNOW...

Factor - a number that divides a number without a
remainder ie. 5 is a factor of 10
Multiple - The times tables of a number ie. 8 is a multiple of 2
Prime number - A number that has only two factors, I and itself ie. II is a prime number.

- $\quad I$ is not a prime number as it only has one factor. 2 is the only even prime number.
- HCF - highest common factor
- To find the HCF of two or more numbers:
a. List all factors of both numbers
b. Find the highest factor that appears in both lists
OR use prime factorisation and a Venn diagram
- LCM - lowest common multiple
- To find the LCM of two or more numbers:
a. List multiples of both numbers
b. Repeat until you find the lowest common multiple
OR use prime factorisation and a Venn diagram

HCF and LCM
Find the HCF and LCM of 24 and 36

HOW TO....

Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
Factors of 20: 1, 2, 4, 5, 10, 20
HCF of $\mathbf{3 0}$ and 20: 10
Find the Least Common Multiple

$$
8 \rightarrow 8,16,24,32,40,48
$$

$$
4 \rightarrow 4,8,12,16,20,24,28,32
$$

$$
6 \rightarrow 6,12,18,24,30,36
$$

$$
48=2 \times 2 \times 2 \times 2 \times 3
$$

Year 8 Term 5 Maths Knowledge Organiser

Shape 3

TKATM

CORE \quad GOOD TO KNOW... \quad HOW TO....

Area: Space inside a 2D object

Perimeter: Length around the outside of a 2D object
$\mathbf{P i}(\boldsymbol{\pi})$: The ratio of a circle's circumference to its diameter Formula: A mathematical relationship/ rule given in symbols. E.g. $b \times h=$ area of rectangle/ square

Infinity (${ }^{\infty}$): A number without a given ending (too great to count to the end of the number) - never ends
Sector: A part of the circle enclosed by two radii and an arc.
Circumference The distance around the outside of a circle Diameter: a straight line passing from side to side through the centre of a circle
Radius: a straight line from the centre to the circumference of a circle

Area and Circumference of a Circle

The area of a circle is the amount of space within a circle

 The circumference of a circle is the distance around the edge of the circle

Orea of a crcce (Cacuitor) SHIFT × $\times 10^{\circ}$
 How to get $\boldsymbol{\pi}$ symbol on the caluultar

Common misconceptions

- Incorrectly using the radius or diameter of a circle

It is important to know the difference between the diameter and the radius of a circle and to use the correct one in the calculation.

- Using an incorrect formula

It can be easy to get confused between the different formulae - make sure you know which formula is for which calculation.

- Incorrect use of BIDMAS

When calculating the area of a circle, we need to calculate the square of the radius first as the radius is raised to the power of 2 , and then multiply this value by π. This is because indices come before multiplication in BIDMAS.

Find the area of this circle. Give your answer to 1 decimal place.

1 Find the radius or diameter of the circle.

To find the area, we need to know the radius. The radius of this circle is 9 cm .

2 Use the relevant formula.
The circle formula for area is $A=\pi r^{2}$.
$A=\pi r^{2}$
$A=\pi \times 9^{2}$
$=254.4690049$

3 Give your answer clearly with the correct units.
We need to give our answer to 1 decimal place. Since the radius is measured in cm , the area will be measured in cm^{2}

$$
\text { Area }=254.5 \mathrm{~cm}^{2}(1 d p)
$$

Year 8 Term 5 Maths Knowledge Organiser

42

Numerator: the number above the line on a fraction. The top number. Represents how many parts are taken Denominator: the number below the line on a fraction. The number represent the total number of parts
Equivalent: of equal value
Mixed numbers: a number with an integer and a proper fraction
Improper fractions: a fraction with a bigger numerator than denominator
Lowest Common Denominator: The Lowest Common Multiple of both the denominators of fractions being added or subtracted

To simplify or cancel down fractions, we need

GOOD TO KNOW...

How to convert a mixed number to improper fraction

In order to convert a mixed number to an improper fraction:
1 Multiply the whole number by the denominator.
2 Add on the numerator

How to convert improper fractions to mixed numbers

In order to change an improper fraction to a mixed number:
1 Work out how many times the denominator divides into the numerator
2 Work out the remainder
3 Write the mixed number with the whole number at the front and the remainder a the new numerator over the original denominator
$\frac{3}{4}$ of 36

As we are asked to work out three quarters of 36 , let's start by working out one quarter:
$\frac{1}{4}$ of $36=9$
So to work out three quarters we multiply this by 3 :

HOW TO....

add/Subtraction any fractions

Use equiudert fractions to find a common muliple for both denominators

```
\frac{1}{2}}\times\frac{1}{3
```Multiply the numerators together: \(\mathbf{1 x} \mathbf{1}=\mathbf{1}\)
2 Multiply the denominators together: \(2 \times 3=\)
3 Simplify if possible: \(\frac{\mathbf{1}}{\mathbf{6}}\).

\section*{Dividing any fractions Remember to use reaprocas}

\section*{Year 8 Term 6 Maths Knowledge Organiser}
\begin{tabular}{l}
CORE \\
\hline \begin{tabular}{l}
Square number: the output of a number multiplied by itself \\
Square root: a value that can be multiplied by itself to give
\end{tabular} \\
\hline
\end{tabular} Square root: a value that can be multiplied by itself to give a square number
Hypotenuse: the largest side on a right angled triangle.
Always opposite the right angle.
Opposite: the side opposite the angle of interest
Adjacent: the side next to the angle of interest
Quadrant: four quarters of the coordinate plane.
Coordinate: a set of values that show an exact position.
Horizontal: a straight line from left to right (parallel to the \(x\) axis)
Vertical: a straight line from top to bottom (parallel to the \(y\) axis)
Origin: \((0,0)\) on a graph. The point the two axes cross

\section*{Identify the hypoteruse}

> The hypoternse s alias the ingest side on a tinange becase
\(\delta\) cpposte the bugest ande

\section*{GOOD TO KNOW..}

Determine fi a trionde 's right-anded

Fa trande s ingt-anged the s.m of the square of the shoter sose wil equal the square of the hyoterse
\[
a^{2}+b^{2}=\text { hypotenuse }
\]
\(a=3 \quad b=4 \quad c=5\)

Sissitung the rumbers nio the theorem show that this sa ngit-anged trange

\section*{Calculate missing sides}

Ether of the short sides boeled \(a\) or \(b\)
\[
\text { a } 12 \mathrm{~cm}
\]
\[
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
\]
\[
12^{2}+b^{2}=15^{2}
\]

I Subsitute in the vales you are guen
\[
\underset{-144}{144}+b^{2}=\underset{-14}{225}
\]

Rearrange the equation by subfracting the shoter
square from the hypotenuse squared
```

Square root to $\left[b^{2}=111\right.$

$$
\begin{aligned}
& \text { find the length } \\
& \text { of the crile }
\end{aligned} \quad b=\sqrt{111}=10.54 \mathrm{~cm}
$$

```

\section*{HOW TO....}

Pythagoras' theorem on a coordinate axis

The ine segment is the hypoteruse
\[
a^{2}+b^{2}=\text { hypotenuse }^{2}
\]

The lenaths of \(a\) and \(b\) are the sides of the triangle

\section*{Be carefil to cteat the seite on the aver}

\section*{Coordinates in four quadrants}

\section*{Year 8 Term 6 Maths Knowledge Organiser}

Data 3
TKATM
\begin{tabular}{l|}
\hline \multicolumn{1}{|c|}{ CORE } \\
\hline \begin{tabular}{l}
Variable: a quantity that may change within the context of the \\
problem.
\end{tabular} \\
\hline
\end{tabular} problem.
Relationship: the link between two variables (items). E.g. Between sunny days and ice cream sales
Correlation: the mathematical definition for the type of relationship..
Origin: where two axes meet on a graph.
Line of best fit: a straight line on a graph that represents the data on a scatter graph.
Outlier: a point that lies outside the trend of graph.
Stem and Leaf Diagram - Shows numerical data split into "leaves" (usually the last digit) and a "stem" (the other digits).
Mean:the average of the given numbers and is calculated by dividing the sum of given numbers by the total number of numbers.
Mode: the value that appears most frequently in a data set.
Median: the middle number in a sorted, ascending or descending list of numbers
Range : The difference between the lowest and

\section*{GOOD TO KNOW...}

Linear Correlation

\section*{The ine of best fit}

The Line of best fit s used to make estimates doat the rifomation \(n\) your seatter gaph

\section*{Tingetobnow}
- The he of best fi DOESNDT need to go through the ongn (The port the caes coosc)
- There sloud be approumedey the same number of ponts doove and bebw the ire it may not go froug? ayports)
- The ve extends across the whde gach
 becase the ine is
desgred to be an average
represertation of the data
It a doay a strajt ine

\section*{HOW TO....}

Draw and interpret a scatter graph
\begin{tabular}{|l|c|c|c|c|c|}
\hline Age of Car (Years) & 2 & 4 & 6 & 8 & 10 \\
\hline value of Car (5s) & 7500 & 6250 & 4000 & 3500 & 2500 \\
\hline
\end{tabular}

Ths dida may not be given \(n\) sye ades
The deta forms iformiton pars for the scatter gaph

ous shoud ft a the vales an and be equaly spread of

\section*{Using a ine of best fit}

Nepodilons ung the he of best ff to estrade wies rscie ar dita pont

\section*{eg 40 havs reveng predects a} percertace of 45

Extrapodions where he use or ire of best ft to predet information atsie of our dita
**Tre s not duas usefil - \(n\) the exerpe you cand sore more the 100/ So reveng for boner can not be estimatedx \({ }^{* x}\)

The port scon'alter
ts an oller becase t deeset fit the rodel and stans pout from the dida

\section*{Year 8 Term 6 Maths Knowledge Organiser}

Shape 5

\section*{TKAT \({ }^{\circ}\)}
CORE \(\mid\) GOOD TO KNOW...

Mirror line: a line that passes through the center of a shape with a mirror image on either side of the line
Line of symmetry: same definition as the mirror line
Horizontal: a straight line from left to right (parallel to the \(x\) axis)
Vertical: a straight line from top to bottom (parallel to the \(y\) axis)
Symmetry: when two or more parts are identical after a transformation.
Vertex: a point two edges meet.
- Transformations - Transformations change the size or position of shapes. There are four types of transformations: reflections, enlargements, rotations, translations.
- Reflection - A shape can be reflected across a line of reflection to create an image, like looking in a mirror. The line of reflection is also called the mirror line. Every point in the image is the same distance from the mirror line as the original shape.
- Rotation - Rotation turns a shape around a fixed point called the centre of rotation. There are three things needed to rotate a shape: the centre of rotation (a coordinate), the angle of rotation (\(90^{\circ}, 180^{\circ}\) etc.) and the direction of rotation (clockwise or anti-clockwise)
- Translation - A translation moves a shape up, down or from side to side but it does not change its appearance in any other way.
- Enlargement - Enlarging a shape changes its size. The shape can get either bigger or smaller.

\section*{TRANSFORMATLONS \\ A CHANGE IN THE POSITION OR SIZE OF AN OBIECT}

\section*{ENLARGEMENT}

Described by a scale factor and a centre

SCALE FACTOR - 2, CENTRE (1, 2)

Reflect Diagonally (1)

\author{
Tum your image \\ I you tim yar image t. becomes a vertical horizorta
} your onswer this way

Draing perpendewier mes
Pupendevier ines to and from the miro the con help
you to pot dagond refectors

\section*{Reflect Diagonaly (2)}

Rotate from a point (in a shape)

Rotate from a point (actisice a shove)

TKAT

\title{
Knowledge Organisers
}

Year 9

\section*{Year 9 Term 1 Maths Knowledge Organiser}
- The priority of operations is: brackets, indices, division, multiplication, addition and subtraction. This is called BIDMAS
- When there is only addition and subtraction or multiplication and division on the same line, we work from left to right.
- Finding the square root is the inverse of finding the square
- Finding the cube root is the inverse of finding the cube
- To round a number to I decimal place (I d.p.), look at the digit in the second decimal place. If it is 5 or more, round up.
- To multiply decimals, ignore the decimal and work out the normal calculation, then put the number of total digits after the decimal place in the question back into the answer. I.e. \(1.1 \times 1.2=1.32\)
- To divide by a decimal, multiply both numbers by a power of ten (\(10,100,1000\) etc.) until you have a whole number to divide by. Then work out the division using the bus stop method.
- A factor is a number that goes into another number without leaving a remainder i.e. 5 is a factor of 20 as 5 goes into 20 four times.
- A multiple is the times tables of a number i.e. the first three multiples of 6 are 6,12 and 18 .

\section*{GOOD TO KNOW...}

\section*{HOW TO....}

\section*{Tens}

Units

Factors of \(\mathbf{3 0}: 1,2,3,5,6,10,15,30\)
 48 Factors of 20: 1, 2, 4, 5, 10, 20

Round 68.1572 to the nearest:
\[
\text { Whole number: } 68 \quad 2 \text { decimal places: } 68.16
\]

\section*{Laws of indices \\ Laws ofindices}
\[
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m \times n}
\end{aligned}
\]

HCF of \(\mathbf{3 0}\) and \(\mathbf{2 0}\) : 10
Find the Least Common Multiple
8, 4, 6
\(8 \rightarrow 8,16,24,32,40,48\)
\(4 \rightarrow 4,8,12,16,20,24,28,32\)
\(6 \rightarrow 6,12,18,24,30,36\)

\section*{Year 9 Term 1 Maths Knowledge Organiser}

\section*{CORE}
- The priority of operations is: brackets, indices, division, multiplication, addition and subtraction. This is called BIDMAS
- When there is only addition and subtraction or multiplication and division on the same line, we work from left to right.
- Finding the square root is the inverse of finding the square
- Finding the cube root is the inverse of finding the cube
- To round a number to I decimal place (I d.p.), look at the digit in the second decimal place. If it is 5 or more, round up.
- A factor is a number that goes into another number without leaving a remainder i.e. 5 is a factor of 20 as 5 goes into 20 four times.
- A multiple is the times tables of a number i.e. the first three multiples of 6 are 6,12 and 18 .

Indices
\(2 \times 2 \times 2 \times 2\) can be written \(2^{4}\)

\section*{Standard Form}
\[
a \times 10^{n}
\]

Where \(\mathrm{I} \leq \mathrm{a}<10\) and n is an integer.
If n is positive, multiply 'a' by 10 ' \(n\) ' times.
If \(n\) is negative, divide ' \(a\) ' by 10 ' \(n\) ' times (this will decrease the value and be a decimal).

\section*{GOOD TO KNOW...}
- When there are \(m\) ways of doing one task and \(n\) ways of doing another, the total number of ways of doing the first task and then the second task is \(m \times n\) ways.
- A factorial is the result of multiplying a sequence of descending integers. I.e. \(4!=4 \times 3 \times 2 \times I=24\)
Negative Exponents Fractional Indices
\[
a^{-n}=\frac{1}{a^{n}}
\]
Numerator - Power
\[
\text { For } a \neq 0
\]
\[
a^{\frac{m^{n}}{n}}=(\sqrt[n]{a})^{m}
\]
\[
a^{-n} \text { is a reciprocal of } a^{n}
\]

Example:
\[
3^{-2}=\frac{1}{3^{2}}
\]
Denominator - Root
Examples:
\[
\left(\frac{2}{5}\right)^{-6}=\left(\frac{5}{2}\right)^{6}
\]
\[
8^{\frac{1}{3}}=\sqrt[3]{8}=2
\]

\section*{Laws of indices}
\[
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m \times n}
\end{aligned}
\]

\section*{HOW TO....}

Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
Factors of 20: 1, 2, 4, 5, 10, 20
HCF of \(\mathbf{3 0}\) and 20: 10
Find the Least Common Multiple
8, 4, 6
\(8 \rightarrow 8,16,24,32,40,48\) \(4 \rightarrow 4,8,12,16,20,24,28,32\) \(6 \rightarrow 6,12,18,24,30,36\)

\(48=2 \times 2 \times 2 \times 2 \times 3\)

Factors
of 24
\[
\mathrm{HCF}=2 \times 3
\]
\(=6\)
LCM \(=3 \times 2 \times 3 \times 2 \times 2\)
\(=72\)

\section*{Year 9 Term 2 Maths Knowledge Organiser}

\section*{HOW TO....}
\[
\begin{aligned}
& \text { Collecting Like Terms } \\
& \text { Ext } x+4 y+6 x+2 y \equiv 7 x+6 y \\
& \text { Ex } 3 x+y-2 x+4 y \equiv x+5 y
\end{aligned}
\]
- Terms can be simplified when multiplying or dividing even when they are not like terms. le. \(a \times b=a b\)
- When multiplying, write the letters in alphabetical order
- Write the number before the letters)
- Substitution means putting numbers in place of letters.
- The factors of a term are all of the numbers and letters that divide exactly into it.
- A common factor is a factor of two or more terms.
- Expand - multiply term outside the bracket by all terms inside the brackets to eliminate brackets

\section*{Laws of indices}
\[
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m \times n}
\end{aligned}
\]

Terms can be simplified when multiplying or dividing, even when they are not like terms.
\[
x \div y=\frac{x}{y}
\]

When multiplying:
- write letters in alphabetical order
- write numbers before letters

Evaluate 3a-2b, for \(a=10\) and \(b=4\)
\[
3 a-2 b \quad(a=10 \quad b=4)
\]
\[
=3(10)-2(4)
\]
\[
=30-8
\]

Factorising

\[
5(x+3)+6(x-4)
\]
1) \(3 a+6 y\)
\[
5 x+15+6 x-24
\]
11x-9
\[
=3(a+2 y)
\]
\[
4 x+32=4(x+8)
\]

Expand \& Simplify...

\section*{Year 9 Term 2 Maths Knowledge Organiser}
CORE \(\quad\) GOOD TO KNOW...

\section*{Indices}

\section*{\(2 \times 2 \times 2 \times 2\) can be written \(2^{4}\)}
- When multiplying powers add the powers
\[
\text { e.g. } 6^{4} \times 6^{7}=6^{11} O R a^{3} \times a^{5}=a^{8}
\]
- When dividing powers subtract the powers e.g. \(6^{8} \div 6^{5}=6^{3}\) OR a \(^{9} \div a^{5}=a^{4}\)
- When in brackets multiply the powers
\[
\text { e.g. }\left(8^{4}\right)^{3}=8^{12} O R\left(x^{5}\right)^{2}=x^{10}
\]
- Any number to the power of zero is I
- Expand - multiply term outside the bracket by all terms inside the brackets to eliminate brackets
- The factors of a term are all of the numbers and letters that divide exactly into it.
- A common factor is a factor of two or more terms.
- The subject of a formula is the letter on its own, on one side of the equals sign.
- A term is a number, letter, or a number and a letter multiplied together i.e. \(x, 3 a, 7 y^{2}\) are all terms
- An expression contains letter and/ or number terms but no equal sign.
- An equation has an equals sign, letter terms and numbers. You can solve it to find the value of the letter.
- An identity is true for all values of letters
- A formula has an equals sign and letters to represent different quantities. The letters are variables as their values can vary.

Q1)Expand: \((x+3)(x-2)\)
\begin{tabular}{|c|c|c|}
\hline & \(x\) & -2 \\
\hline\(x\) & \(x^{2}\) & \(-2 x\) \\
\hline+3 & \(+3 x\) & -6 \\
\hline
\end{tabular}
\((x+3)(x-2)=x^{2}+x-6\)
\begin{tabular}{|c|c|c|}
\hline Factorise & Answer & Expand \& Simplify. \\
\hline \(7 \mathrm{x}+14\) & \(7(x+2)\) & \\
\hline 45-27k & 9(5-3k) & \\
\hline \(12 \mathrm{ab}+7 \mathrm{~b}\) & \(b(12 a+7)\) & \(5(x+3)+6(x-4)\) \\
\hline \(\mathrm{y}^{2}\)-9y & \(y(y-9)\) & \\
\hline \(8 \mathrm{t}-32 \mathrm{t}^{2}\) & \(8 t(1-4 t)\) & \\
\hline \(16 \mathrm{gh}+28 \mathrm{gf}\) & \(4 \mathrm{~g}(4 \mathrm{~h}+7 \mathrm{f})\) & \(11 \mathrm{x}-9\) \\
\hline 21wz-77wx & 7w(3wz-11x) & \\
\hline \multicolumn{3}{|l|}{Finding nth term of linear sequence} \\
\hline
\end{tabular}
1) \(6,10,14,18,22\)

The sequence
increases by 4 , so the nth term starts with 4n

Now compare the sequence to the 4 times table
\(6,10,14,18,22\)
Each term is 2 bigger than

\(4,8,12,16,20\)
So the nth term is
\(4 n+2\)

\section*{HOW TO....}

\begin{tabular}{cccccc}
5 & 3 & 9 & 19 & 33 & 51 \\
\(2 n^{2}\) & 2 & 8 & 18 & 32 & 50
\end{tabular}
\(5-2 n\)
a. Make a the subject of the formula \(v^{2}=u^{2}+2 a s\)
b. Makex \(x\) the subject of the formula \(y=\frac{a x+b}{c}\)
a \(v^{2}=u^{2}+2 a 5\)
b \(y=\frac{a x+b}{c}\)

\[
c y=a x+b
\]
Multiply both sides by c.
\[
c y-b=a x-S u b t r a c t ~ b \text { from both sides. }
\]
\[
\frac{c y-b}{a}=x-\text { Divide both sides by } a \text {. }
\]
\(x=\frac{c y-b}{a}-\) Re-write in the form \(x=\ldots\)

\section*{Year 9 Term 3 Maths Knowledge Organiser [F unit 3 - Graphs, tables and charts]}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CORE & \multicolumn{5}{|c|}{GOOD TO KNOW...} \\
\hline \begin{tabular}{l}
Graphs, tables and charts are used to display, interpret and compare data. \\
Discrete Data - Can only have particular values, e.g shoe size. \\
Continuous Data - Measured and can have any values e.g length and time.
\end{tabular} & \multicolumn{2}{|l|}{Positive correlation \(y_{\uparrow} \uparrow\)
\[
\underbrace{}_{\times}{ }^{x^{\times} \times x_{x}^{x}}
\]} & \begin{tabular}{l}
Negative correlation \\
As \(x\) increases \(y\) decreases
\end{tabular} & \multicolumn{2}{|r|}{\begin{tabular}{l}
 \\
No relationship between \(x\) and \(y\)
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Grouped Frequency Table - Contains sorted data in groups called classes.} & & Baseball & Basketball & Football & Total \\
\hline & Male & 13 & 15 & 20 & 48 \\
\hline and in columns down the table. You can calculate totals across and down. & Female & 23 & 16 & 13 & 52 \\
\hline Stem and Leaf Diagram - Shows numerical data split into "leaves" (usually the last digit) and a "stem" (the other digits) & Total & 36 & 31 & 33 & 100 \\
\hline
\end{tabular} "leaves" (usually the last digit) and a "stem" (the other digits).
Pie Chart - A circle divided into sectors, each sector represents a set of data.
Scatter Graphs - Shows the relationship between two sets of data. Plot the points with crosses. Do not join them up.
- Correlation: Relationship between the sets of data.
- Outlier: A value that does not fit the pattern.
- Line of best fit: A straight line drawn through the middle of the points representing the trend.
\(1,4,27,18,18,3,24,22,11,22,18,11,18,7,29,18,11,6,29,11\)

\section*{HOW TO....}

Only place the last digit of each number in the 'leaf'
Arrange the numbers from smallest to largest 101, 131, 114, 102, 125, 101, 115, 103, 120, 122

Place all other digits of the number in the 'stem' The table shows the match results of a football team. \begin{tabular}{|l|l|l|l|l|}
\hline Result & Won & Drawn & Lost \\
\hline & Fra
\end{tabular} Draw a pie chart to represent the data.
\begin{tabular}{|c|c|c|}
\hline Intervals & Tally Marks & Frequency \\
\hline \(0-5\) & \(\|\) & 2 \\
\hline \(5-10\) & \(\|\) & 2 \\
\hline \(10-15\) & |N & 5 \\
\hline \(15-20\) & \(\|\) & 5 \\
\hline \(20-25\) & \(\|\|\) & 3 \\
\hline \(25-30\) & \(\|\) & 3 \\
\hline
\end{tabular}

\section*{Here,}

\section*{Year 9 Term 3 Maths Knowledge Organiser [H unit 3-Interpreting\&representing data] TKAT}

\section*{CORE}

Stem and Leaf Diagram - Shows numerical data split into "leaves" (usually the last digit) and a "stem" (the other digits).

Frequency Polygon - To draw a frequency polygon, plot the frequency against the midpoints for each group.

Time-series Graphs - A time-series graph is a line graph with time plotted on the horizontal axis.

Scatter Graphs - Shows the relationship between two sets of data. Plot the points with crosses. Do not join them up.
- Correlation: Relationship between the sets of data.
- Outlier: A value that does not fit the pattern.
- Line of best fit: A straight line drawn through the middle of the points representing the trend.

\section*{Averages and Range}

The modal class has the highest frequency. Make sure to write down the class and not the frequency.

As \(x\) increases \(y\) decreases

No relationship

\section*{GOOD TO KNOW...}

\section*{HOW TO....}

The table shows the times, \(T\), taken for 100 people to queve for a rollecroaster at a theme park.
a Estimate the mean waiting time.
b Explain why the mean is only an estimate.
The third column gives an estimate of the wating time in each class.
\begin{tabular}{|c|c|c|c|}
\hline Time, \(T\) (mins) & Frequency, \(f\) & Class midpoint, \(x\) & \(x f\) \\
\hline \(0 \leqslant T<20\) & 14 & 10 & \(10 \times 14=140\) \\
\hline \(20 \leqslant T<40\) & 55 & 30 & \(30 \times 55=1650\) \\
\hline \(40 \leqslant T<60\) & 31 & 50 & \(50 \times 31=1550\) \\
\hline Total & 100 & & 3340 \\
\hline
\end{tabular}

The fourth column gives anestimate of the total waiting time in each class.
The scatter graph shows the GDP per capita (in \(\$ 1000\) s) and life expectancy (in years)
for eight countries.

b The GDP per capita in the UK is \(\$ 36000\). Estimate the life expectancy of a baby born in the UK.
for eight countries.

Draw a line of best fit.

b Estimated life expectancy in the UK is 79 years. The annual salaries of
stem and leaf diagram

Compare the distribution of salaries of the male and female employees.
Male range: \(38000-18000=£ 20000\)
Female range: \(58000-19000=£ 39000\)
There are 9 males, so median male salary is: \(\frac{9+1}{2}=5\) th value \(=£ 29000\) There are 13 females so median female salary is: \(\frac{13+1}{2}=7\) th value \(=£ 30000\) Fermale employees' salaries have a larger range but the median salaries of men and
women are similar:
\({ }^{\circ}\)
A frequency polygon can be drawn directly from the frequency table by using by finding the midpoint of each class interval.
\begin{tabular}{|l|c|c|}
\hline Time \((t\) mins \()\) & Frequency & Midpoint \\
\hline \(10<t \leq 20\) & 7 & 15 \\
\hline \(20<t \leq 30\) & 10 & 25 \\
\hline \(30<t \leq 40\) & 18 & 35 \\
\hline \(40<t \leq 50\) & 6 & 45 \\
\hline \(50<t \leq 60\) & 4 & 55 \\
\hline
\end{tabular}

with straight sides

\section*{Year 9 Term 3 Maths Knowledge Organiser [F unit 4 - Fractions and percentages]}
CORE \(\quad\) GOOD TO KNOW... \(\quad\) HOW TO....

\section*{Operations with Fractions}
- Add/ subtract fractions by finding equivalent fractions with the same denominator
- Multiply fractions by multiplying the numerators together and the denominators together
- Divide fractions by following the KFC rule: keep the first fraction as it is, flip the second fraction around so the numerator becomes the denominator and change the sign from a divide to times.

\section*{Finding Percentages}
\(50 \%\) - Divide amount by 2
10\% - Divide amount by 10
\(1 \%\) - Divide amount by 100

\section*{Keywords}

Fraction - A fraction represents a part of a whole.
Decimal - A number with a decimal point in it.
Percentage - A part of a whole expressed in hundredths. e.g \(1 \%\) of \(£ 100=£ 1\)

Numerator - The part of a fraction that is above the line and signifies the number to be divided by the denominator. Denominator - The part of a fraction that is below the line and that functions as the divisor of the numerator.
Simple interest - is the interest calculated only on the original amount invested. It is the same each year.

Mixed Number - A number consisting of a whole number and a proper fraction.
Improper Fraction - A fraction whose numerator is larger than the denominator.
Find the simple interest when \(£ 5000\) is invested at \(2.75 \%\) per annum over 2 years.

There are 20 students in a class. 6 are male. What percentage of the class is male?
\[
{ }_{\times 2}^{+} \frac{3}{4}=\frac{(4 \times 2)+3}{4}=\frac{8+3}{4}=\frac{11}{4}
\]

Mixed Number
\[
\text { Write } \frac{7}{8} \text { as a decimal. }
\]
\[
\frac { 7 } { 8 } = 8 \longdiv { 7 } = 8 \longdiv { 0 . 8 7 5 }
\]
\[
\frac{7}{8}=0.875
\]

Find \(30 \%\) of 70.21

\(30 \%=\frac{3}{10}\) So we can find \(30 \% \quad 70 \div 10=7\) by dividing by 10 , then multiplying by \(3.7 \times 3=21\)
Increase 60 by \(20 \%\)
\[
\begin{array}{r}
100 \%=60 \\
20 \%=12 \\
60+12=72
\end{array}
\]

Decrease 80 by \(45 \%\)
\[
\begin{array}{r}
100 \%=80 \\
45 \%=36 \\
80-36=44
\end{array}
\]

\section*{Year 9 Term 3 Maths Knowledge Organiser [H unit 4 - Fractions, ratio\&percentages] TKATH}
CORE \(\quad\) GOOD TO KNOW... \(\quad\) How TO....

\section*{Operations with Fractions}

Add/ subtract fractions by finding equivalent fractions with the same denominator

Multiply fractions by multiplying the numerators together and the denominators together
Divide fractions by following the KFC rule: keep the first fraction as it is, flip the second fraction around so the numerator becomes the denominator and change the sign from a divide to times.

\section*{Ratios}

A unit ratio is a ratio written in the form \(\mathrm{I}: \mathrm{n}\), where n is a number

\section*{Keywords}

Fraction - A fraction represents a part of a whole.
Decimal - A number with a decimal point in it.
Percentage - A relative value indicating hundredth parts of any quantity e.g \(1 \%\) of \(£ 100=£ 1\)
Numerator - The part of a fraction that is above the line and signifies the number to be divided by the denominator.
Denominator - The part of a fraction that is below the line and that functions as the divisor of the numerator.
Ratio - A ratio shows how much of one thing there is compared to another.
Simple interest - is the interest calculated only on the original amount invested. It is the same each year.

\section*{Direct proportion means that one quantity increases at} the same rate as the other.

If one banana costs 20 p, three bananas will cost 60 p etc. The amount of bananas increase by \(\times 3\) and the cost also increases by \(x 3\) so both are in direct proportion.

There are 20 students in a class. 6 are male. What percentage of the class is male?
\[
\begin{aligned}
\text { Method A: } \begin{aligned}
\frac{6}{2 O} \times 100 \% & =6 \times \frac{70 Q}{2 Q} \% \\
& =30 \%
\end{aligned} \quad 1 .
\end{aligned}
\]
\[
=30 \%
\]

\[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Convert to a fraction with } \\
\text { denominator } 100 .
\end{array} \\
\hline
\end{array}
\]
\[
\begin{aligned}
& \text { Work out } \\
& \qquad \frac{3}{4} \times \frac{2}{7} \\
& \qquad \frac{3 \times 2}{4 \times 7}=\frac{6}{28}=\frac{3}{14}
\end{aligned}
\]

Work out
\[
\frac{3}{4} \div \frac{2}{7}
\]
\[
\frac{3}{4} \times \frac{7}{2}=\frac{21}{8}=2 \frac{5}{8}
\]
\[
\begin{aligned}
& \text { Work out } \\
& \\
& \begin{aligned}
& \frac{3}{4}+\frac{2}{7} \\
= & \frac{21}{28}+\frac{8}{28} \\
\frac{3}{4}+\frac{2}{7}= & \frac{29}{28} \\
= & 1 \frac{1}{28}
\end{aligned}
\end{aligned}
\]
\[
\begin{aligned}
\text { Work out } & \\
& \begin{aligned}
& \frac{3}{4}-\frac{2}{7} \\
\frac{3}{4}-\frac{2}{7}= & \frac{21}{28}-\frac{8}{28} \\
= & \frac{13}{28}
\end{aligned}
\end{aligned}
\]
\[
{ }_{\times}^{+} \stackrel{3}{4} \frac{3}{4}=\frac{(4 \times 2)+3}{4}=\frac{8+3}{4}=\frac{11}{4}
\]

Mixed Number
Write \(\frac{7}{8}\) as a decimal.
\[
\begin{aligned}
& \frac { 0 . 8 7 5 } { 8 } = 8 \longdiv { 7 } = 8 \longdiv { 7 . 0 ^ { 6 } 0 ^ { 4 } 0 } \\
& \frac{7}{8}=0.875
\end{aligned}
\]

Share \(\$ 48\) in the ratio 3:1:2
1) Find the total number of parts
\[
3+1+2=6
\]
2) Divide the amount by the total number of parts
\[
\$ 48 \div 6=\$ 8=1 \text { part }
\]
3) Multiply each number in the ratio by the value of 1 part

\section*{Year 9 Term 4 Maths Knowledge Organiser [F Unit 5 - Equations, inequalities\&sequences] \\ THAT}

\section*{CORE}
- A letter represents an unknown variable
- Manipulate an equation using inverse operations, e.g. make \(x\) the subject of the equation i.e. rearrange the equation so that \(x\) is on it's own
\(x+y=7\) becomes \(x=7-y\) by subtracting \(y\) from both sides
- \(\quad\) The letter n is generally used for sequences
- Continue a pictorial or numerical sequence - e.g. the first 4 terms in a sequence are \(4,7,10,13\) the next term is 16 as the pattern is going up by 3 each time
- Inequalities can be written as an equation or represented on a number line
\begin{tabular}{ll}
\(\circ\) & \(<\) means less than \\
\(\circ\) & \(>\) means greater than \\
\(\circ\) & \(\leq\) means less than or equal to \\
0 & \(\geq\) means greater than or equal to
\end{tabular}
- Expand - multiply term outside the bracket by all terms inside the brackets to eliminate brackets
- \(\quad\) Substitute - replace the given letter with the given value
- Solve - find the exact value of the unknown variable
- Term - is a number in a sequence e.g. I st term etc
- Inverse - opposite, e.g. inverse of add is subtract
- Expression - Numbers, symbols and operators grouped together e.g. \(2 x+3\) is an expression
- Equation - an expression that contains an equals sign
- Identity - an equation that is true no matter what values are chosen
- Formula - a mathematical rule
- Sequence - a list of numbers or objects in a particular order
- Integer - a whole number

\section*{GOOD TO KNOW...}
- Make \(x\) the subject means rearrange the equation so that \(x\) is on it's own on one side
- Use changing the subject and inverse operations to solve equations
- When multiplying or dividing both sides of an inequality by a negative number the inequality sign reverses
- When we solve equations, we use inverse operations to work out the value of \(x\).
E.g. solve \(3 x+4=40\)
\[
\begin{gathered}
-4 \quad-4 \\
3 x=36 \\
\div 3 \quad \div 3 \\
x=12
\end{gathered}
\]
- The \(n\)th term of a sequence is the general rule to work out any term in that sequence.
- Integers solutions can be given for inequalities E.g. write the integer solutions which satisfy the

\section*{inequality I \(<x \leq 5\)}

The integer solutions would be 2, 3, 4 and 5
- To continue a sequence, we need to find the term-toterm rule
E.g. A sequence starts \(3,8,13,18, \ldots\) Find the next two terms in the sequence. The rule is +5 so \(18+5=23\) and 23
\(4 n=\)

\section*{HOW TO....}
\[
\begin{aligned}
& 3(\mathrm{a}+4)=3 \mathrm{a}+12 \quad 2 x(x+y) \\
& 4(\mathrm{a}-5)=4 a-20=2 x^{2}+2 x y
\end{aligned}
\]
Make c the subject
\(\mathrm{A}=3 \mathrm{~b}+3 \mathrm{c}\)
\(\mathrm{A}-3 \mathrm{~b}=3 \mathrm{c}\)
\(\frac{\mathrm{A}-3 \mathrm{~b}}{3}=\frac{3 \mathrm{c}}{3}\)
\(\frac{\mathrm{~A}-3 \mathrm{~b}}{3}=\frac{3 \mathrm{c}}{3}\)
\(\frac{\mathrm{~A}-3 \mathrm{~b}}{3}=\mathrm{c}\)\(\quad\) Problem: \(2 x-5<1\)

Inequalities on a Number Line

\section*{Symbol}

Words
Example
\(>\)
Greater than \(\qquad\)
\(x<-1\)
\(\xrightarrow[-8 \cdot 7]{ } \underset{-6}{ }\)
\(x \geq 3\)
\(\qquad\)

\section*{Year 9 Term 4 Maths Knowledge Organiser [F Unit 5 - Equations, inequalities\&sequences] \\ THAT}

\section*{CORE}
- A letter represents an unknown variable
- Manipulate an equation using inverse operations, e.g. make \(x\) the subject of the equation i.e. rearrange the equation so that \(x\) is on it's own
\(x+y=7\) becomes \(x=7-y\) by subtracting \(y\) from both sides
- \(\quad\) The letter n is generally used for sequences
- Continue a pictorial or numerical sequence - e.g. the first 4 terms in a sequence are \(4,7,10,13\) the next term is 16 as the pattern is going up by 3 each time
- Inequalities can be written as an equation or represented on a number line
\begin{tabular}{ll}
\(\circ\) & \(<\) means less than \\
\(\circ\) & \(>\) means greater than \\
\(\circ\) & \(\leq\) means less than or equal to \\
0 & \(\geq\) means greater than or equal to
\end{tabular}
- Expand - multiply term outside the bracket by all terms inside the brackets to eliminate brackets
- \(\quad\) Substitute - replace the given letter with the given value
- Solve - find the exact value of the unknown variable
- Term - is a number in a sequence e.g. I st term etc
- Inverse - opposite, e.g. inverse of add is subtract
- Expression - Numbers, symbols and operators grouped together e.g. \(2 x+3\) is an expression
- Equation - an expression that contains an equals sign
- Identity - an equation that is true no matter what values are chosen
- Formula - a mathematical rule
- Sequence - a list of numbers or objects in a particular order
- Integer - a whole number

\section*{GOOD TO KNOW...}
- Make \(x\) the subject means rearrange the equation so that \(x\) is on it's own on one side
- Use changing the subject and inverse operations to solve equations
- When multiplying or dividing both sides of an inequality by a negative number the inequality sign reverses
- When we solve equations, we use inverse operations to work out the value of \(x\).
E.g. solve \(3 x+4=40\)
\[
\begin{gathered}
-4 \quad-4 \\
3 x=36 \\
\div 3 \quad \div 3 \\
x=12
\end{gathered}
\]
- The \(n\)th term of a sequence is the general rule to work out any term in that sequence.
- Integers solutions can be given for inequalities E.g. write the integer solutions which satisfy the

\section*{inequality I \(<x \leq 5\)}

The integer solutions would be 2, 3, 4 and 5
- To continue a sequence, we need to find the term-toterm rule
E.g. A sequence starts \(3,8,13,18, \ldots\) Find the next two terms in the sequence. The rule is +5 so \(18+5=23\) and 23
\(4 n=\)

\section*{HOW TO....}
\[
\begin{aligned}
& 3(\mathrm{a}+4)=3 \mathrm{a}+12 \quad 2 x(x+y) \\
& 4(\mathrm{a}-5)=4 a-20=2 x^{2}+2 x y
\end{aligned}
\]
Make c the subject
\(\mathrm{A}=3 \mathrm{~b}+3 \mathrm{c}\)
\(\mathrm{A}-3 \mathrm{~b}=3 \mathrm{c}\)
\(\frac{\mathrm{A}-3 \mathrm{~b}}{3}=\frac{3 \mathrm{c}}{3}\)
\(\frac{\mathrm{~A}-3 \mathrm{~b}}{3}=\frac{3 \mathrm{c}}{3}\)
\(\frac{\mathrm{~A}-3 \mathrm{~b}}{3}=\mathrm{c}\)\(\quad\) Problem: \(2 x-5<1\)

Inequalities on a Number Line

\section*{Symbol}

Words
Example
\(>\)
Greater than \(\qquad\)
\(x<-1\)
\(\xrightarrow[-8 \cdot 7]{ } \underset{-6}{ }\)
\(x \geq 3\)
\(\qquad\)

\section*{Year 9 Term 4 Maths Knowledge Organiser [H Unit 5 - Angles, Pythagoras\&Trigonometry] \\ TKAT}

\section*{Year 9 Term 5 Maths Knowledge Organiser}

CORE
- Angles are measured in degrees
- Angles on a straight line add up to 180
- A right angle is 90 degrees
- Angles around a point add up to 360
- Angles in a triangle add up to 180
- Angles in a quadrilateral add up to 360
- Exterior angles add up to 360
- Vertically opposite angles are equal
- Co-interior angles add up to 180
- Alternate angles are equal
- Corresponding angles are equal
- Parallel - Two straight lines equidistant apart which never meet
- Polygon - a 2D shape made up of straight lines
- Equilateral triangle - a triangle with 3 equal angles and sides
- Isosceles triangle - a triangle with 2 equal angles and sides
- Right angled triangle - a triangle with one right angle
- Interior angle - an angle inside a polygon
- Exterior - an angle outside a polygon
- Perpendicular - at 90 degrees to a given line
- Congruent - a shape that is exactly the same shape and size
- \(\quad\) Similar - a shape with the same size angles with all corresponding sides in proportion

\section*{GOOD TO KNOW...}
- Names of 2D shapes

\section*{HOW TO....}

\section*{Geometry}

\section*{Geometry Basics}

\section*{Corresponding and Alternate Angles}
- \(\quad \mathrm{A}<\) is used to label an angle.
- \(\quad\) ABC refers to the middle letters so we would be looking at the angle at \(B\) shown below.
The figure below also illustrates the angle \(\angle A B C\)
The outside Angle of a Triangle always equals the sum of the two far away inside angles.

Exterior Angle \(\mathrm{C}^{\circ}=\mathrm{a}+\mathrm{b}\)
\(130=60+b\)

Formula for the sum of Polygon interior angles

\section*{GCSE Maths \\ }

\section*{Exterior Angles}

The sum of the exterior angles of any polygon is \(360^{\circ}\). The exterior angle of a regular \(n\)-sided polygon is \(\frac{360^{\circ}}{n}\)

Equilateral Triangle has three equal sides

Isosceles Triangle has two equal sides

\section*{Year 9 Term 5 Maths Knowledge Organiser}

\section*{CORE}
- A linear graph is a straight line
- Quadratic, cubic and reciprocal graphs are curved
- \(\quad y=m x+c\) represents a linear graph where \(m\) is the gradient and \(c\) is the \(y\) intercept
- The mid point is halfway between the two given points
- The diameter is double the radius

\section*{Keywords}
- Linear - when graphed creates a straight line
- Quadratic - one unknown term is squared
- Cubic - one unknown term is cubed
- Equation - an expression that contains an equals sign
- Root - a solution to a quadratic or cubic equation.

There can be more than one root
- Origin - the point where the x and y axes intersect
- Axis - the horizontal or vertical number line which intersect to create a coordinate grid
- Gradient - the steepness of a line
- \(\quad Y\)-intercept - the point where a line cuts the \(y\) axis
- Proportion - a mathematical comparison between two numbers - if the ratios that the two numbers increase/decrease are the same this is direct proportion
- Perpendicular - at 90 degrees to a given line

\section*{GOOD TO KNOW...}
- Know that a graph axis doesn't have to start at zero but can start at any number using a zigzag between the origin and the first defined number
- Be able to find the equation of a line perpendicular to a given line
- Use the formula to calculate the gradient of a graph
\[
m=\frac{\text { difference in } y}{\text { difference in } x}
\]
- Substitute values into an equation to formulate a table of values to create a graph
- Understand and interpret distance time graphs, velocity graphs and calculate rates of change
- Calculate area under graph
- Know that a quadratic and cubic equation can have more than I solution
- \(\quad\) Acceleration \(=\) change in velocity
time
- \(\quad\) The equation for a circle with centre \((0,0)\), is given by the equation \(x^{2}+y^{2}=r^{2}\) where \(r\) is the radius

\section*{HOW TO....}

Find the equation of the line that is perpendicular to

\(y=3 x-32\)
\(-27-27\)
Types of Graphs

To calculate the gradient of a straight line through two coordinates (\(x_{1}, y_{1}\)) and (\(x_{2}, y_{2}\)):

It can be helpful to think about this formula as: "Change in y divided by chance in x " or "Rise over run"

\section*{Year 9 Term 5 Maths Knowledge Organiser}

\section*{CORE}
- When we order a set of numbers, we need to line them up either:

> - Ascending - smallest value to biggest \(-\quad\) Descending - biggest to smallest
- Sampling - using a portion of a total population to represent the full population
- Mean - an average calculated by adding all the values and dividing by the total number of values
- Mode - the most common value
- Median - list numbers in numerical order and find the middle value
- Range - the biggest value minus the smallest value
- Outlier - a data point which doesn't fit the trend of the rest of the data

Goals Scored Over the Last 7 Games

134678
mean
average

\section*{median 6 \\ middle}

\section*{range} largest - smallest

\section*{GOOD TO KNOW...}

Example: Parking Spaces per House in Hampton Street
Isabella went up and down the street to find out how many parking spaces each house has Here are her results:
\begin{tabular}{||c|c|}
\hline \begin{tabular}{c}
Parking \\
Spaces
\end{tabular} & Frequency \\
\hline 1 & 15 \\
\hline 2 & 27 \\
\hline 3 & 8 \\
\hline 4 & 5 \\
\hline
\end{tabular}

What is the mean number of Parking Spaces?
Answer:
Mean \(=\frac{15 \times 1+27 \times 2+8 \times 3+5 \times 4}{15+27+8+5}\)
\(=\frac{15+54+24+20}{55}\)
\(=2.05\).

The Mean is \(\mathbf{2 . 0 5}\) (to 2 decimal places)
Example:
The following is a frequency table of the score obtained in a mathematics quiz. Find the median score.

Solution:
Number of scores \(=3+4+7+6+3=23\) (odd number)
Since the number of scores is odd, the median is at the \(\left(\frac{n+1}{2}\right)^{\text {n. }}=\left(\frac{23+1}{2}\right)^{n}=12^{\text {th }}\) position.

To find out the \(12^{\text {th }}\) position, we need to add up the frequencies as shown:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Score & 0 & 1 & 2 & 3 & 4 \\
\hline Frequency & 3 & 4 & 7 & 6 & 3 \\
\hline Position & 3 & \(3+4=7\) & \(7+7=14\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Marks scored & Frequency & Mid-point & Frequency \(\times\) Mid-point \\
\hline \(0-9\) & 3 & \(\frac{0+9}{2}=4.5\) & \(3 \times 4.5=13.5\) \\
\hline \(10-19\) & 5 & \(\frac{10+19}{2}=14.5\) & \(5 \times 14.5=72.5\) \\
\hline \(20-29\) & 8 & \(\frac{20+29}{2}=24.5\) & \(8 \times 24.5=196\) \\
\hline \(30-39\) & 4 & \(\frac{30+39}{2}=34.5\) & \(4 \times 34.5=138\) \\
\hline & \(\mathrm{n}=20\) & & Total \(=420\) \\
\hline
\end{tabular}

\section*{Population}
\(\bigcirc\) \(\bigcirc\)
\(\qquad\)
0

\section*{HOW TO....}

Sample000

000
\(\qquad\)

\(\qquad\)

\section*{The key shows us how}

\section*{CORE}
- 2D - a 2 dimension shape (flat, e.g. square, circle)
- 3D - a 3 dimensional shape (solid, e.g. cube, cylinder)
- Area - the space inside a 2D shape measured in squared units
- \(\quad\) Area of a rectangle/square \(=\) length \(\times\) width
- Area of a triangle \(=\underline{\text { base } \times \text { height (perpendicular) }}\)
- \(\quad\) Area of a circle \(=\pi r 2\)
- \(\quad\) Circumference of a circle \(=\pi d\)
- Area of a trapezium \(=\frac{(a+b) h}{2}\)
- Volume - the space inside a 3D shape measured in cubed units
- Volume of a cube/cuboid = length \(\times\) width \(\times\) height
- Volume of a prism = area of cross section (front face) \(x\) length
- Volume of a cylinder \(=\pi r^{2} \times h\)
- Know properties of triangles and quadrilaterals
- Prism - a 3D shape which has the same cross section throughout, e.g. cuboid, cylinder, triangular prism)
- Arc - a curve joining two points on the circumference of a circle
- Sector - a region of a circle bounded by two radii and an arc

\section*{GOOD TO KNOW...}
- Plan is the view of a 3D shape when looked at from above
- Elevation is the view of a 3D shape when looked at from the front or the side
- Be able to find the area of a compound shape
- Understand and use bounds
- Surface area is the area of all the faces of a 2D shape added together
- Perpendicular - at an angle of 90 degrees to a given line
- Know that a hemisphere is half a sphere
- Recognise and identify cones, pyramids and frustums
- Identify arcs, sectors and segments

1 m 100 cm

1 metre squared \(=10,000\) centimetre squared

\section*{HOW TO....}

This cuboid is made from 24 unit cubes. Its volume is
Volume \(=\) length \(\times\) width \(\times\) height
Volume \(=2 \times 4 \times 3\)
Volume \(=24 \mathrm{~cm}^{3}\)
What is the area of a circle with radius 3 cm ?

\[
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\pi \times 3^{2} \\
& =9 \pi c m^{2}
\end{aligned}
\]
\[
=28.3 \mathrm{~cm}^{2}(1 . d . p)
\]
\(\mathrm{V}=(\mathrm{b} \times \mathrm{h}) \times \mathrm{H}\)
2

\(\mathrm{V}=\frac{(12 \times 5)}{2} \times 10\)

\(\mathrm{V}=\frac{60}{2} \times 10\)
\[
\begin{aligned}
C & =\pi d \\
& =3.142 \times 6 \mathrm{~cm} \\
& =18.85 \mathrm{~cm}
\end{aligned}
\]
\(\mathrm{V}=300 \mathrm{~cm}^{3}\)

\section*{Year 9 Term 6 Maths Knowledge Organiser F unit 8 - Perimeter, area and volume 1 TKA}
CORE \(\quad\) GOOD TO KNOW... \(\quad\) HOW то....

\section*{Perimeter}

Calculated by adding up the length of each of the sides.

\section*{Area}

Square \(/\) Rectangle \(=\) length \(\times\) width
- Triangle \(=1 / 2 \times\) base \(\times\) height
- Measure in squared units, e.g. \(\mathrm{cm}^{2}\).

\section*{Volume}
- Cube/cuboid \(=\) length \(\times\) width \(\times\) height
- \(\quad\) Prism \(=\) area of cross section (front face) \(\times\) length
- Measure in cubic units, e.g. \(\mathrm{cm}^{3}\).

Keywords
Perimeter - The distance around the edge of a shape.
Area - The space inside a 2D shape.
Volume - The volume of a 3D shape is the amount of space inside it.
Surface Area - The amount of space covering the outside of a 3D shape.
Perpendicular Height - The line at a right angle to the base line.
Prism - A 3D shape which has the same cross section throughout, e.g. cuboid, cylinder, triangular prism).
Parallelogram - A quadrilateral with two pairs of parallel sides. Looks like a slanted rectangle.

To find the area of a trapezium, add the parallel sides, divide by 2
then multiply by the distance between the parallel sides

10 m
\(\begin{aligned} \text { Area }=\left(\frac{a+b}{2}\right) \mathrm{h}=\left(\frac{6+10}{2}\right) \times 4 & =8 \times 4 \\ & =32 \mathrm{~m}^{2}\end{aligned}\)

Year9 Term 6 Maths Knowledge Organiser H unit 8 - Transformations\&constructions

\section*{CORE}
- Transformations - Transformations change the size or position of shapes. There are four types of transformations: reflections, enlargements, rotations, translations.
- Reflection - A shape can be reflected across a line of reflection to create an image, like looking in a mirror. The line of reflection is also called the mirror line. Every point in the image is the same distance from the mirror line as the original shape.
- Rotation - Rotation turns a shape around a fixed point called the centre of rotation. There are three things needed to rotate a shape: the centre of rotation (a coordinate), the angle of rotation (\(90^{\circ}, 180^{\circ}\) etc.) and the direction of rotation (clockwise or anti-clockwise)
- Translation - A translation moves a shape up, down or from side to side but it does not change its appearance in any other way.
- Enlargement - Enlarging a shape changes its size. The shape can get either bigger or smaller. Two things are needed to enlarge a shape: scale factor (x 2 would make a side twice a big) and the centre of enlargement (a coordinate)
- 3D shapes can be drawn from different viewpoints.
- The plan looks at a shape from above (the birdseye view)
- The front elevation looks at a shape from the front
- The side elevation looks at a shape from the side
- We draw the plan and elevations as 2D shapes.

\section*{GOOD TO KNOW...}

\section*{TRANSFORMATIONS}

A CHANGE IN THE POSITION OR SIZE OF AN OBIECT

\section*{REFLECTION}

Described by a mirror line
MIRAOR UNE x=6

\section*{ROTATION}

Described by an angle and a centre
\(0^{\circ}\) clocrwss, conter (6, 1)

\section*{ENLARGEMENT}

Described by a scale factor and a centre

SCALE FACTOR - 2, CENTRE \([1,2)\)

\section*{HOW TO....}

Construct a triangle with sides \(11 \mathrm{~cm}, 8 \mathrm{~cm}\) and 6 cm .

1 Sketch the triangle first
2 Draw the 8 cm line.
3 Open your compasses to 6 cm . Place the point at one end of the 8 cm line. Draw an arc
4 Open your compasses to 11 cm . Draw another arc from the other end of the 8 cm line.
Make sure your arcs are long enough to intersect
5 Join the intersection of the arcs to each end of the 8 cm line. Don't rub out your construction marks.

\section*{TKAT:}

\section*{Knowledge Organisers}

Year 10

\section*{Year 10 Term 1 Maths Knowledge Organiser}
CORE \(\quad\) GOOD TO KNOW... \(\quad\) HOW TO....

Linear graphs are straight line graphs, e.g. \(y=2 x-I\).
We substitute the \(x\) value into the equation to get the \(y\) value. Once we have both we can then plot the coordinates and draw the graph.

Y-axis: the vertical axis on a grid
X-axis: the horizontal axis on a grid
Midpoint: The middle value of a coordinate. To find the midpoint, add the two \(x\)-values together and half them, then add the two \(y\)-values together and half them.

\section*{Keywords}

Coordinates: A pair of numbers that describe the position of a point on a graph with \(x\) and \(y\) axis.
Line Segment: A part of a straight line that is bounded by two distinct endpoints.
Gradient: How steep a line is at any point.
Midpoint: The point halfway along a line or between two coordinates.
Intercept: Where two graphs cross.
\(y\)-intercept: Where a graph crosses the \(y\)-axis.
Parallel: Two straight lines that stay the same distance apart. positive gradient negative gradient

A car's distance is recorded for 10 seconds.
How can we calculate the 2 different speeds?

Draw the linear graph of \(y=2 x-1\).

Multiply this value by 2 and then subtract I to get the \(y\)
\(\qquad\)

Don't forget to draw a straight line through all of the
coordinates you have plotted.

\section*{Year 10 Term 1 Maths Knowledge Organiser [H unit 9 - Equations and inequalities]}
- Solving a quadratic equation means finding values for the unknown that fit.
- You can solve quadratics by either: factorising, completing the square or by using the quadratic formula. All give you the exact same answer.
- The roots of a quadratic function are its solutions when it is equal to zero.
- When there are two unknowns, you need two equations to find their values. These are called simultaneous equations.

\section*{Inequalities}
- You can show inequalities on a number line.
- An empty circle shows the value is not included.
- A filled circle shows the value is included.
- An arrow shows the solution continues towards infinity.
- < means less than
- > means greater than
- \(\leq\) means less than or equal to
- \(\quad \geq\) means greater than or equal to
- You can rearrange an inequality in the same way as you rearrange an equation.

\section*{GOOD TO KNOW...}

You can write the solution to an inequality using set notation

Inequalities on a Number Line

\section*{HOW TO....}

FIND THE ROOTS OF
\(f(x)=x^{2}+18 x+65\)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { QUADRATIC } \\
& \text { FORMULA }
\end{aligned}
\] & FACTORING & COMPLETING THE SQUARE \\
\hline \[
\frac{-\mathrm{b} \pm \sqrt{b^{2}-4 a c}}{2 a}
\] & \(0=x^{2}+18 x+65\) & \[
0=x^{2}+18 x+65
\] \\
\hline \[
\begin{aligned}
& f(x)=1 x^{2}+18 x+65 \\
& -18 \pm \sqrt{18^{2}-4(1)(65)}
\end{aligned}
\] & What two numbers have a sum of 18 and a product of \(65 ?\) & Take half of 18 , square it, and add to both sides \\
\hline \(2(1)\)
\(\sqrt{1} \pm \sqrt{64}\)
\(-18 \pm 2\) & 5 and 13 & \[
\begin{aligned}
9^{2}+-65 & =x^{2}+18 x+9^{2} \\
16 & =(x+9)^{2}
\end{aligned}
\] \\
\hline \[
\frac{-18+8}{2} \quad \frac{-18-8}{2}
\] & \(0=(x+5)(x+13)\) & \[
\begin{gathered}
\sqrt{16}=\sqrt{(x+9)^{2}} \\
\pm 4=x+9
\end{gathered}
\] \\
\hline & 2 & ® § \\
\hline \(x=-5 \quad x=-13\) & \(x=-5 \quad x=-13\) & \(x=-5 \quad x=-13\) \\
\hline
\end{tabular}

\section*{By elimination method}
1. Two linear equations

Example
Solve (i) \(2 x+y=5\)

Eliminate \(y\) by adding the equations
\(x-y=1 \quad\) Putting value back into \(2^{\text {nd }}\) equation
\(2-y=1\)
\(y=1\)
Answer (2,1)

\section*{Year 10 Term 1 Maths Knowledge Organiser}

\section*{Transformations : \\ Transformations change the size or position of shapes. There are four types of transformations: \\ GOOD TO KNOW... \\ TRANSFORMATIONS \\ A CHANGE IN THE POSITION OR SIZE OF AN OBJECT}
I. Reflection - A shape can be reflected across a line of reflection to create an image, like looking in a mirror.
- The line of reflection is also called the mirror line. Every point in the image is the same distance from the mirror line as the original shape.
2. Rotation - Rotation turns a shape around a fixed point called the centre of rotation.
- There are three things needed to rotate a shape: the centre of rotation (a coordinate), the angle of rotation (\(90^{\circ}, 180^{\circ}\) etc.) and the direction of rotation (clockwise or anti-clockwise)
3. Translation - A translation moves a shape up, down or from side to side but it does not change its appearance in any other way.
- Vector - A vector is a quantity that has both a magnitude and a direction
\(\binom{3}{2}\) means 3 right, 2 up \(\binom{-4}{-5}\) means 4 left, 5 down.
4. Enlargement - Enlarging a shape changes its size. The shape can get either bigger or smaller.

Two things are needed to enlarge a shape: scale factor (\(\times 2\) would make a side twice a big) and the centre of enlargement (a coordinate)

\section*{REFLECTION}

Described by a mirror line
Mishor unt x=6

\section*{ENLARGEMENT}

Described by a scale factor and a centre

SCALE FACTOR = 2, CENTRE (1, 2)

\section*{HOW TO....}

(Pick a corner to measure from.)

Reflection on a Coordinate Plane

\section*{Year 10 Term 1 Maths Knowledge Organiser}

\section*{CORE}

\section*{GOOD TO KNOW...}

\section*{HOW TO....}
- Probability - how likely something is to happen
- Probability is either given as a fraction, decimal or a percentage
- \(\quad\) Probability \(=\frac{\text { number of successful outcomes }}{\text { Total number of possible outcomes }}\)
- A sample space diagram shows all the possible outcomes of two events.
- Two events are mutually exclusive if they cannot happen at the same time. For example, you cannot be at school and at the cinema at the same time.
- When events are mutually exclusive, you can add their probabilities together.
- Probability adds up to I
- The probability of an event not happening, is one minus the probability of the event happening.
- In a probability experiment a trial is repeated many times and the outcomes recorded. The relative frequency of an outcome is called the experimental probability.
- Theoretical probability is calculated without doing an experiment.
- A frequency tree shows two or more events and the number of times they occurred.
- Two events are independent if one event does not affect the probability of the other. To find the probability of independent event, multiply the two probabilities together.
- A tree diagram shows two or more events and their probabilities.
- If one event depends on the other, the two events are dependent.

\section*{Tree Diagram}

Tree diagram to show the probabilities when a coin is tossed twice.

Venn Diagrams
\(A\) union \(B\)
Elements that belong to either \(A\) or \(B\) or both.

\(A\) intersect \(B\)
Elements that belong to both \(A\) and \(B\).

Elements that don't
belong to \(A\).

Below is a Venn diagram describing the sets of odd numbers and prime numbers for the integer values in the universal set \(\xi=\)
\[
1,2,3,4,5,6,7,8,9,10 .
\]

There are 5 odd numbers. 3 of these odd numbers are also prime numbers. The probability of selecting a number from the universal set that is odd, and prime, is 3 out of the total number of values in the universal set, 10 . The solution is therefore:
\(\mathrm{P}(\) Odd and Prime \()=P(0 \cap P)=\frac{3}{10}\).

\section*{Year 10 Term 2 Maths Knowledge Organiser}
[F unit 11 - Ratio and proportion] TKAT

Inverse proportion means that when one quantity increases, the other decreases.
- If it takes 2 decorators 6 hours to paint a room, it will take 4 decorators 3 hours to paint the same room. The number of decorators has doubled and the amount of time has halved.

To simplify a ratio,
divide all numbers in the ratio
by the same amount

price per item \(=\) total cost \(\div\) quantity
Conversion Graphs Learning Objective: Plot and interpret real life conversion graphs. Use the graph to:a) Convert \(£ 8\) to Euros 11€b) convert 14 Euros to £s \(£ 10\)AIIs C) find the difference in \(£ s\) between \(£ 12\) and 14 Euros. \(£ 12-£ 10=£ 12\)d) calculate the change from \(£ 50\) when you spend \(20 €\). Give your answer in \(£ s\) \(£ 50-£ 14=£ 36\)

Share \(\$ 20\) in the ratio 1:3 \(1+3=4\)

1 Here are the ingredients needed to make 16 gingerbread men. \(24-16=8\)

Hamish wants to make 24 gingerbread men. Work out how much of each of the ingredients he needs.
\[
\begin{aligned}
& 180+90=270 \\
& 40+20=60 \\
& 110+55=165 \\
& 30+15=45
\end{aligned}
\]

\section*{Year 10 Term 2 Maths Knowledge Organiser}
[H unit 11 - Multiplicative reasoning] TKAT

\section*{CORE}
- Compound interest - The amount of interest earned over a certain period of time i.e. monthly, quarterly or yearly. The interest earned is based on the current amount.
- Per annum means per year
- Compound measures combine measures of two different quantities
- Speed is a measure of distance travelled and time taken
- Density is the mass of a substance in a certain volume
- Pressure is a measure of force applied over an area

Direct proportion means that one quantity increases at the same rate as the other.
- If one banana costs 20p, three bananas will cost 60 p etc. The amount of bananas increase by \(\times 3\) and the cost also increases by \(x 3\) so both are in direct proportion.

Inverse proportion means that when one quantity increases, the other decreases.

If it takes 2 decorators 6 hours to paint a room, it will take 4 decorators 3 hours to paint the same room. The number of decorators has doubled and the amount of time has halved.

\section*{GOOD TO KNOW...}

You borrow the money for a \(\$ 6500\) car. The bank loans you the money at \(7.25 \%\) compounded annually and would like you to pay off the car in 5 years. How much is your total payoff? \(A=P(1+r)^{t}\)
\(A=6500(1+0.0725)^{5}\)
\(7 \%=0.07\)
\(A=6500(1.419)\)
\(7.25 \%\)
\(=0.0725\)
\(A=\$ 9223.59\)
A man walks at an average speed of \(5.4 \mathrm{~km} / \mathrm{h}\). What is his average speed in \(\mathrm{m} / \mathrm{s}\) ?

\section*{HOW TO....}

Calculating Average Speed

Total Distance Travelled \(=240+360\)
\(=600 \mathrm{~km}\)

Total Time Taken \(=3\) hour +4 hours
\(=7\) hours

Average Speed \(=\frac{\text { Total Distance }}{\text { Total Time }}\)
\[
=\frac{600}{7}
\]
\[
=85.71 \mathrm{~km} / \mathrm{hr}
\]

Example 1: A plastic shape of density \(1.08 \mathrm{~g} / \mathrm{cm}^{3}\) has a volume of \(225 \mathrm{~cm}^{3}\). Calculate the mass of the shape

Mass \(=\) Density \(\times\) Volume

\section*{Year 10 Term 3 Maths Knowledge Organiser}
[F unit 12 - Right-angled triangles] TKAT

When finding angle measures use the inverse of the trigonometric functions: \(\tan ^{-1}, \sin ^{-1}, \cos ^{-1}\)

Example: \(\quad \sin \theta=\frac{27}{35}\) They are Sine (Sin), Cosine (Cos) and Tangent (Tan),
The

We can use these to work out missing sides and angles in right-angled triangles.

\(a=\sqrt{13^{2}-12^{2}}\)
\(a=\sqrt{169-144}\)
\(a=\sqrt{25}\)

\section*{Year 10 Term 3 Maths Knowledge Organiser [H unit 12 - Similarity and congruence]}
CORE

Similarity - Two shapes are Similar when one can become the other after an enlargement, reflection, translation or rotation. Corresponding angles are equal and corresponding sides are all in the same ratio.

Enlargement - A type of transformation where we change the size of the original shape to make it bigger or smaller.

Scale Factor - The ratio between the scale of a given original object and a new object, which is its representation but of a different size (bigger or smaller).

Congruent - Two shapes are congruent if they have the same shape and size, or when one shape can be rotated or reflected to fit exactly on the other.
- When a linear scale factor is k
- Lengths are multiplied by k
- Area is multiplied by \(\mathrm{k}^{2}\)
- Volume is multiplied by \(\mathrm{k}^{3}\)
\begin{tabular}{|c|c|}
\hline Measure & Multiplier or Divider \\
\hline Length & Scale factor \\
\hline Area & \((\text { Scale factor })^{2}\) \\
\hline Volume & \((\text { Scale factor })^{3}\) \\
\hline
\end{tabular}

\section*{GOOD TO KNOW...}

\section*{Shape \(D\) is similar to shape \(E\).}

Calculate the length of shape \(E\).

Cylinders G and H are similar.
The diameter of G is 6 cm .
The volume of G is \(108 \mathrm{~cm}^{3}\). The volume of H is \(256 \mathrm{~cm}^{3}\) Work out the diameter \(d\) of cylinder \(H\).

Volume scale factor \(=\frac{\text { large }}{\text { small }}=\frac{256}{108}=\frac{64}{27}=k^{3} \quad \begin{aligned} & \text { In an enlargement be scale factor } k \text {, the } \\ & \text { volume is enlarged by scale factor } k^{3} .\end{aligned}\)
\(k=\sqrt[3]{\frac{64}{27}}=\frac{\sqrt[3]{64}}{\sqrt[3]{27}}=\frac{4}{3}\)
\(d=\frac{4}{3} \times 6=8 \mathrm{~cm}\)

\section*{HOW TO....}

In the figure, given that the two triangles are similar, what is the scale factor that would take you from the larger. triangle to the smaller triangle?

- Corresponding angles are congruent
- comesponding sides are in proportion
\[
11 \times \frac{1}{2}=\frac{11}{2}
\]
scale factor \(=\frac{\text { new length }}{\text { original length }}\)
\[
=5.5
\]
\[
\text { scale factor }=\frac{6}{12}=\frac{1}{2}
\]

These two rectangles are similar. Find the missing length \(x\) in the smaller rectangle.

Write the ratio \(\frac{\text { small }}{\text { large }}\) for the lengths and the widths.
\(\frac{\text { small }}{\text { large }}=\frac{1}{2}=\frac{x}{5}\)

\section*{Year 10 Term 3 Maths Knowledge Organiser}
CORE \(\quad\) GOOD TO KNOW... \(\quad\) HOW TO....

\section*{Probability - how likely something is to happen}
- Probability is either given as a fraction, decimal or a percentage
- Probability adds up to I
- The probability of an event not happening, is one minus the probability of the event happening.
Probability \(=\) number of successful outcomes Total number of possible outcomes

Sample Space Diagram shows all the possible outcomes of two events.
Tree Diagrams - shows two or more events and their probabilities.

Venn Diagrams - Probabilities can be calculated using venn diagrams.

In a probability experiment a trial is repeated many times and the outcomes recorded. The relative frequency of an outcome is called the experimental probability.
If one event depends on the other, the two events are dependent.

Two events are independent if one event does not affect the probability of the other. To find the probability of independent event, multiply the two probabilities together.

Two events are mutually exclusive if they cannot happen at the same time. When events are mutually exclusive, you can add their probabilities together.

\section*{Probability}

NOT
Independent event not occurring 1 minus the probability of occurrence
\[
P=1-P(A)
\]

What is the probability of not rolling a 1 on a die?
\[
P=1-P_{1}=1-\frac{1}{6}=\frac{5}{6}
\]

\footnotetext{
Probability of getting a total of ten \(=\frac{3}{36}\)
}

\section*{Year 10 Term 3 Maths Knowledge Organiser}

\section*{CORE}
- Lower bound: a value that is less than or equal to every element of a set of data.
- Upper bound: a value that is greater than or equal to every element of a set of data.
- The graph of sine

- The graph of tangent

- Graphs can be transformed which means they look the same but are shifted or reflected in some way

\section*{Find the size of angle \(A\) in this triangle.}
\(\underline{\sin A}=\underline{\sin C}\)
\(\frac{\sin A}{7}=\frac{\sin 40}{12}\)
\(\frac{\sin A}{7}=\frac{\sin 40}{12}\)
\(\sin A=\frac{7 \times \sin 40}{12}=0.375\)
\(A=\sin ^{-1} 0.375\)
\(-22^{\circ}\)

\section*{GOOD TO KNOW...}

\section*{HOW TO....}

In this diagram, the measurements are correct to 3 significant figures.
a Find the upper and lower bounds for the value of \(x\), to 3 decimal places.
b Give the value of \(x\) to a suitable level of accuracy.

a \(A B\) : upper bound \(=8.235 \mathrm{~m}\), lower bound \(=8.225 \mathrm{~m}\) 」 \(B C\) : upper bound \(=5.365 \mathrm{~m}\), lower bound \(=5.355 \mathrm{~m}\)
\[
\begin{aligned}
\text { The upper bound for } \cos x & =\frac{5.365}{8.225} \\
& =0.6522796353
\end{aligned}
\]

So \(x=49.286^{\circ}(3\) d.p. \()\)
\[
\text { The lower bound for } \cos x=\frac{5.355}{8.235}
\]
\[
=0.6502732240
\]

So \(x=49.438^{\circ}\) (3 d.p.)

Find the upper and lower bounds of the lengths of \(A B\) and \(B C\).

The upper bound of a fraction upper bound of the numerator \(=\overline{\text { lower bound of the denominator }}\) Write down all the figures in your calculator display.

Use \(\cos ^{-1}\) on your calculator. The lower bound of a fraction lower bound of the numerator upper bound of the denominator

You could write the answer as \(49.286^{\circ} \leqslant x<49.438^{\circ}\)

Find the size of angle \(A\), in degrees, of the triangle shown.

\section*{The cosine}
\[
\int_{A} \int_{B} \quad a c d
\]
\(a^{2}=b^{2}+c^{2}-2 b c \cos (A)\)
\(\cos ^{-1}\left(\frac{a^{2}-b^{2}-c^{2}}{-2 b c}\right)=A\)
\[
A=\cos ^{-1}\left(\frac{(7.8 \mathrm{~cm})^{2}-(14 \mathrm{~cm})^{2}-(9.6 \mathrm{~cm})^{2}}{-2(14 \mathrm{~cm})(9.6 \mathrm{~cm})}\right)=32^{\circ}
\]
\[
\text { So the upper bound for } x \text { is } 49.438^{\circ} \text { and the lower bound is } 49.286^{\circ}
\]

> \begin{tabular}{|l|} \hline Round the upper \\ and lower bounds to \\ 1 d.p. Do they both \\ give the same value? \\ \hline \end{tabular}

Round to the nearest degree they both give the same value.

\section*{Year 10 Term 4 Maths Knowledge Organiser}
[F Unit 14 - Multiplicative reasoning] TKAT
(ear
- Original amount is always \(100 \%\)
- Percent is per 100
- \(\quad 1 \mathrm{~cm}=10 \mathrm{~mm}\)
- \(\quad 1 \mathrm{~m}=100 \mathrm{~cm}\)
- \(\quad \mathrm{lkm}=1000 \mathrm{~m}\)
- \(\quad \mathrm{kg}=1000 \mathrm{~g}\)
- \(\quad \mathrm{II}=1000 \mathrm{~m}\)
- Inverse - opposite, e.g. inverse of add is subtract
- Proportion - a mathematical comparison between two numbers - if the ratios that the two numbers increase/decrease are the same this is direct proportion
- Ratio - The relationship in quantity, amount or size

1m
100 cm

1 metre squared \(=10,000\) centimetre squared

Speed

Time

Distance

GOOD TO KNOW...

\section*{HOW TO....}

Example: A pair of socks went from \(\$ 5\) to \(\$ 6\), what is the percentage change?

\section*{Answer (Method 1):}
- Step 1: \(\$ 5\) to \(\$ 6\) is a \(\$ 1\) increas
- Step 2: Divide by the old value: \(\$ 1 / \$ 5=0.2\)
- Step 3: Convert 0.2 to percentage: \(0.2 \times 100=\mathbf{2 0 \%}\) rise

If a driver has travelled 180 miles and it took them 3 hours to make that distance, then to work out their speed you would take:

180 miles \(/ 3\) hours - \(\mid>180 / 3=60\)
So the driver's speed would be 60 mph .

\section*{Percent Change}
- Year 2: \(£ 42+5 \%=£ 42+£ 2.10=£ 44.10\)
\(\frac{\text { New Value }- \text { Old Value }}{\text { Old Value }} \times 100 \%\)

A jacket costs \(£ 102\) after a discount of \(15 \%\). What is the original price of the jacket?

\section*{Year 10 Term 4 Maths Knowledge Organiser}
[H Unit 14 - Further statistics]
TKAT

\section*{Year 10 Term 5 Maths Knowledge Organiser [F Unit 15 - Constructions, loci and bearings]}
- Bearings are always measured from North, in a clockwise direction and are written using 3 figures, e.g 045 degrees
- Measure using a ruler and protractor accurately

DHOW TO USE A PROTRACTORE

- Identify cube, cuboid and cylinder
- 2D - a 2 dimension shape (flat, e.g. square, circle)
- 3D - a 3 dimensional shape (solid, e.g. cube, cylinder)
- Bisector - a line which divides a line or angle in half exactly
- Loci - a set of points with the same property e.g. within 3 cm of a point - you would draw a circle using compasses set at 3 cm from the point given
- Perpendicular - at 90 degrees to a given line
- Congruent - a shape that is exactly the same shape and size
- \(\quad\) Similar - a shape with the same size angles with all corresponding sides in proportion

\section*{GOOD TO KNOW...}
- Identify and use SSS, ASA and SAS
- Plan is the view of a 3D shape when looked at from above
- Elevation is the view of a 3D shape when looked at from the front or the side
- Can show on a diagram a region by using given parameters using loci
- Can bisect an angle or line using compasses

\section*{HOW TO.... TKAT}

In the space below, drawa skect of the solid shpe.
Give the dimensions of the solid on yours sectch
Scale \(=1 \mathrm{~cm}: 5 \mathrm{~km}\)
Scale factor \(=5\)
Actual distance \(=14 \mathrm{~km}\)
Map distance \(=\frac{\text { Actual distance }}{\text { Scale factor }}\)
\[
=\frac{14}{5}
\]
\[
=2.8
\]

Front Viow from two points \(x\) and \(Y\) is
described with a straight
line. it can be construct line. it can be cons
using a pair of arcs.

The set of points a given distance
from a single point, \(P\), is a circle
 circie around then end ooints.
parallel lines connecting them

Alocus traced around a square
gives a lozenge shape with a Alves a lozenge shape,., with ar
quarter circle at each corner.

\section*{Year 10 Term 5 Maths Knowledge Organiser [H Unit 15 - Equations and graphs]}

\section*{CORE}
- Simultaneous equations are two equations with shared variables
- Simultaneous equations can be solved algebraically or graphically
- Expand brackets
- Inequalities can be solved algebraically or graphically
- < means less than
- > means greater than
- \(\leq m e a n s\) less than or equal to
- \(\quad \geq\) means greater than or equal to
- Identify the turning point on a quadratic graph

\section*{Keywords}
- Expand - multiply term outside the bracket by all terms inside the brackets to eliminate brackets
- Solve - find the exact value of the unknown variable
- Equation - an expression that contains an equals sign
- Quadratic - one unknown term is squared
- Root - a solution to a quadratic or cubic equation. There can be more than one root
- Coefficient - a number that is being multiplied by the variable
e.g. \(2 x+62\) is the coefficient which \(x\) is multiplied by
- Turning point - the point where a graph changes direction

\section*{GOOD TO KNOW...}
- Expand more than one set of brackets
- Factorise and solve a quadratic equation
- Substitute values into an equation to create a table of values to plot a quadratic or cubic graph
- Solve a quadratic equation graphically (find the roots)
- Recognise linear, quadratic, cubic and reciprocal graphs
- Be able to complete the square to find turning points algebraically
- Solve simultaneous equations graphically
- Draw inequalities on a graph and the use to show a region which satisfies the inequalities
- Know that when representing inequalities on a graph
- < > means a dotted line
- \(\quad \leq \geq\) means a solid line

\section*{HOW TO....}

Find the solution to the equation \(x^{3}+5 x=20\) using the initial value \(x_{0}=2\), giving the answer to 3 decimal places.

First, rearrange the equation to leave \(x\) on its own on one side of the equation.

One way to do this is:
\(x^{3}+5 x=20\)
\(x^{3}=20-5 x\)
\(x=\sqrt[3]{20-5 x}\)
To solve the equation, use the iterative formula \(x_{n+1} \sqrt[3]{20-5 x_{n}}\)

We are given the initial value \(x_{0}=2\)
Substituting this into the iterative formula gives \(x_{1}=\sqrt[3]{20-5 \times 2}=\sqrt[3]{10}=2.154 \ldots\).

Substituting iteratively gives:
\(x_{2}=\sqrt[3]{20-5 \times 2.154}=\sqrt[3]{9.227 \ldots}=2.097(3 \mathrm{dp})\)
\(x_{3}=\sqrt[3]{20-5 \times 2.097}=\sqrt[3]{9.512 \ldots}=2.118(3 \mathrm{dp})\)
\(x_{4}=\sqrt[3]{20-5 \times 2.118}=\sqrt[3]{9.405 \ldots}=2.111(3 \mathrm{dp})\)
\(x_{5}=\sqrt[3]{20-5 \times 2.111}=\sqrt[3]{9.445 \ldots}=2.114(3 \mathrm{dp})\)
\(x_{6}=\sqrt[3]{20-5 \times 2.114}=\sqrt[3]{9.430 \ldots}=2.113(3 \mathrm{dp})\)
\(x_{7}=\sqrt[3]{20-5 \times 2.113}=\sqrt[3]{9.436 \ldots}=2.113(3 \mathrm{dp})\)
Since \(x_{6}\) and \(x_{7}\) give the same value to 3 decimal places, the iteration stops. The solution to the equation \(x^{3}+5 x=20\) is 2.113 to 3 decimal places

\section*{Year 10 Term 5 Maths Knowledge Organiser [F Unit 16-Quadratic equations\&graphs TKAT}
- Expand a single bracket
- Factorise expressions
- Solve linear equations
- Simplify an expression by collecting like terms

\section*{Keywords}
- Expand - multiply term outside the bracket by all terms inside the brackets to eliminate brackets
- Solve - find the exact value of the unknown variable
- Equation - an expression that contains an equals sign
- Quadratic - one unknown term is squared
- Root - a solution to a quadratic or cubic equation. There can be more than one root
- Substitute - replace the given letter with the given value
- Factor - a number that divides a number without a remainder ie. 5 is a factor of 10 .
- Factorise - find hcf and put brackets back into expression - reverse of expanding
- Coefficient - a number that is being multiplied by the variable e.g. \(2 x+62\) is the coefficient which \(x\) is multiplied by
- Simplify - collect like terms
- Reciprocal - the inverse if a number e.g. the reciprocal of 2 is \(1 / 2\)
- Turning point - the point where a graph changes direction

\section*{GOOD TO KNOW...}
- Expand double brackets and recognise that double brackets form a quadratic expression
- Factorise a quadratic expression and solve
- Use algebra to represent side lengths and then use to calculate perimeter/area
- Recognise linear, quadratic, cubic and reciprocal graphs
- Substitute values into an equation to create a table of values to plot a quadratic graph
- Know what roots are and be able to find the roots of an equation from a graph
- Solve quadratic equation graphically

\section*{Types of Graphs}

\section*{HOW TO....}

Factorise \(x^{2}+11 x+24\)

Find two numbers that multiply to get +24 and add to get +11
Final answer: \((x+8)(x+3)\)

\section*{Year 10 Term 5 Maths Knowledge Organiser}
[H Unit 16 - Circle theorems]

\section*{TKAT}

- Radius is half the diameter
- Isosceles triangles have 2 equal sides and 2 equal angles
- Right angled triangles have one right angle

Keywords
- Tangent - a line which is at 90 degrees to the radius it joins with at the circumference
- Segment - a region of a circle created by a chord
- Chord - a line joining two points on the circumference which doesn't pass through the centre
- Arc - a curve joining two points on the circumference of a circle
- Sector - a region of a circle bounded by two radii and an arc

\section*{HOW TO....}

\(A B\) is the diameter of a circie.

\section*{Year 10 Term 6 Maths Knowledge Organiser [F unit 17 - Perimeter, area\&volume 2] TKAT}
\begin{tabular}{c|c|c}
\hline CORE & GOOD TO KNOW... & HOW TO....
\end{tabular}

\section*{Circle}

Circumference - Trd
Area - \(\pi r^{2}\)
Measure in squared units, e.g. \(\mathrm{cm}^{2}\).
Volume
- Cylinder \(=\) area of circle (front face) \(\times\) length Measure in cubic units, e.g. \(\mathrm{cm}^{3}\).
\[
\pi=3.14 \ldots \text { (2d.p.) }
\]
- Area : Square/Rectangle \(=\) length \(\times\) width Area: Triangle \(=1 / 2 \times\) base \(\times\) height

\section*{Keywords}

Circumference - The distance around the circle.
Area - The space inside a 2 D shape.
Diameter (d) - A straight line that runs from one side of a circle to another and passes through the center.
Radius (\(\mathbf{r}\)) - A straight line from the centre of the circle to the edge. Radius is half the diameter.
Volume - The volume of a 3D shape is the amount of space inside it.
Prism - A 3D shape which has the same cross section throughout, e.g. cylinder.
Surface Area - The amount of space covering the outside of a 3D shape.
Arc - a curve joining two points on the circumference of a circle
Sector - a region of a circle bounded by two radii and an arc.

\section*{Example}

Which has the greatest volume?

Base Area \(=\quad \pi \times 3.2^{2}=32.17\)
Volume \(=\frac{1}{3} \times 32.17 \times 7\)
\[
=\underline{75.06 \mathrm{~cm}^{3}}
\]

Base Area \(=3.2 \times 3.2=10.24\)
Volume \(=\frac{1}{3} \times 10.24 \times 7\)
\[
=\underline{23.89 \mathrm{~cm}^{3}}
\]

Cone has the greatest volume

EXAMPLE (CIRCUMFERENCE)

\(\mathrm{C}=\pi \mathrm{d}\) \(=3.142 \times 6 \mathrm{~cm}\) \(=18.85 \mathrm{~cm}\)

\[
C=2 \pi r^{\prime}
\]
\[
\begin{aligned}
& =2 \times 3.142 \times 4 \mathrm{~cm} \\
& =25.14 \mathrm{~cm}
\end{aligned}
\]

What is the area of a circle with radius 3 cm ?

\[
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\pi \times 3^{2} \\
& =9 \pi c m^{2} \\
& =28.3 \mathrm{~cm}^{2}(1 . d . p)
\end{aligned}
\]

\section*{Volume of cylinders}

\[
\begin{aligned}
\text { Volume } & =\pi r^{2} h \\
& =\pi \times 3^{2} \times 5 \\
& =\pi \times 9 \times 5 \\
& =141.37 \mathrm{~cm}^{3}
\end{aligned}
\]

\section*{Year 10 Term 6 Maths Knowledge Organiser}

\section*{[H unit 17 - More algebra]}

\section*{TKAT}

\section*{CORE}
- Changing the subject of an equation means rearranging that equation so that letter appears on its own (i.e. \(y=\) \(3 x\) shows that \(y\) is the subject)
- Algebraic fractions can be worked out the same way as normal fractions
- Add/ subtract fractions by finding equivalent fractions with the same denominator
- Multiply fractions by multiplying the numerators together and the denominators together
- Divide fractions by following the KFC rule: keep the first fraction as it is, flip the second fraction around so the numerator becomes the denominator and change the sign from a divide to times.
- \(\quad\) Surds are square roots that cannot be worked out to produce an exact value (i.e. \(\sqrt{ } 5\) is in surd form as it has Make \(x\) the subject of the formula \(P=d \sqrt{\frac{x}{y}}\)

\section*{GOOD TO KNOW...}
 The inverse function of \(x \rightarrow 5 x-1\) is \(x \rightarrow \frac{x+1}{5}\) to find the inverse function.
Start with \(x\) as the innut.
Write the function as a function machine.
Reverse the function machine Start with \(x\) as the input.

\section*{HOW TO....}

\section*{Simplify \(\frac{x}{5}+\frac{x}{3}\)}

LCM of 5 and 3 is 15

Find the LCM of the denominators.
\(\times 3\)
Add the fractions.
\(\frac{3 x}{15}+\frac{5 x}{15}=\frac{8 x}{15}\)

Write both fractions with the same denominator.

To rationalise the fraction \(\frac{1}{a \sqrt{b}}\), multiply by \(\frac{\sqrt{b}}{\sqrt{b}}\) must show that it will be true in all cases.
To prove a satement is not true you can find a counter-example - an example that does not fit the statement.

Show that \((x+4)^{2}-7 \equiv x^{2}+8 x+9\)

\[
=x^{2}+8 x+9
\]

\section*{Expand the brackets on the}
left-hand side (LHS).

\section*{\(R H 5=x^{2}+8 x+9\)}

SoLHS \(=\) RHS and \((x+4)^{2}-7 \equiv x^{2}+8 x+9\)

Aim to show that \(L H S=\) RHS.

Write \(\frac{1}{x+2}-\frac{3}{x+3}\) as a single fraction in its simplest form.
\[
\text { Common denominiator }=(x+2)(x+3)-
\]

Find a common denominator.

\[
=\frac{7 x+21-3 x-6}{(x+2)(x+3)}=\frac{4 x+15}{(x+2)(x+3)}
\]

Convert teach fraction to an equivalent fraction with the common denominator \((x+2)(x+3)\).

Expand the brackets in the
numerator, then simplify.

TKAT

\title{
Knowledge Organisers
}

Year 11

\section*{Year 11 Term1Maths Knowledge Organiser [F unit 18 - Fractions, Indices\&Standard Form]}

\section*{CORE GOOD TO KNOW... HOW TO.... TKATR}

Mixed Number - A number consisting of a whole number and a proper fraction.
Improper Fraction - A fraction whose numerator is larger than the denominator.

\section*{Mixed Numbers Calculations}

When multiplying or dividing mixed numbers change to an improper (top heavy) fraction first

\section*{Indices}
\(2 \times 2 \times 2 \times 2\) can be written \(2^{4}\)
- When multiplying powers add the powers e.g. \(6^{4} \times 6^{7}=6^{11}\) OR a \({ }^{3} \times a^{5}=a^{8}\)
- When dividing powers subtract the powers
\[
\text { e.g. } 6^{8} \div 6^{5}=6^{3} \text { OR } a^{9} \div a^{5}=a^{4}
\]
- When in brackets multiply the powers e.g. \(\left(8^{4}\right)^{3}=8^{12} O R\left(x^{5}\right)^{2}=x^{10}\)
- Any number to the power of zero is I
- The reciprocal of any number is I divided by the
number eg: the reciprocal of 3 is \(1 / 3\)
- The reciprocal of a number is found by raising the number to the power of \(-I\)
- To find a negative power, find the reciprocal and raise to the positive power

Standard Form -is used to write very large of very small numbers
\[
a \times 10^{n}
\]

Where \(\mathrm{I} \leq \mathrm{a}<10\) and n is an integer.

\section*{Laws of indices}
\[
\begin{aligned}
a^{m} \times a^{n} & =a^{m+n} \\
a^{m} \div a^{n} & =a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m \times n}
\end{aligned}
\]
\[
\begin{aligned}
& 10^{3}=1000 \\
& 10^{2}=\quad 100 \\
& 10^{1}=\quad 10 \\
& 10^{0}=\quad 1 \\
& 10^{-1}=\quad 0.1 \\
& 10^{-2}=\quad 0.01 \\
& 10^{-3}=
\end{aligned} 0.001
\]
\begin{tabular}{ll}
Examples & \\
Nork out the value of \(\left(6.4 \times 10^{7}\right) \times\left(2 \times 10^{-3}\right)\) \\
Sive your answer in standard index form. \\
\(=6.4 \times 2 \times 10^{7} \times 10^{-3}\)
\end{tabular}

Write the following in standard index form:
32000000
0.00000574
\(=3.2 \times 10000000\)
\(=5.74 \times 0.000001\)
\(=3.2 \times 10^{7}\)
\(=5.74 \times 10^{-6}\)

Write the following as ordinary numbers:
\[
\begin{array}{ll}
8.35 \times 10^{-3} & 2.9 \times 10^{6} \\
=8.35 \times 0.001 & =2.9 \times 1000000 \\
=0.00835 & =2900000
\end{array}
\]
\[
{ }_{\times 2}^{+} \frac{3}{4}=\frac{(4 \times 2)+3}{4}=\frac{8+3}{4}=\frac{11}{4}
\]

Mixed Number

\section*{Year 11 Term 1 Maths Knowledge Organiser [H unit 18 - Vectors and Geometric Proof]}
CORE

Vector arithmetic:
Where \(a\) is the vector \(\binom{3}{4}\)
\(2 a=\binom{6}{8}\)
\(3 \mathbf{a}=\binom{9}{12}\)
\(5 \mathrm{a}=\binom{15}{20}\)

We can add vectors by adding the two x components and adding the two \(y\) components together.
\[
\begin{aligned}
& \mathbf{a}=\binom{3}{4} \quad \mathbf{b}=\binom{2}{7} \\
& \mathbf{a}+\mathbf{b}=\binom{3+2}{4+7} \quad=\binom{5}{11}
\end{aligned}
\]

\section*{GOOD TO KNOW...}

Vectors can be represented as:

Column Vectors

\section*{HOW TO....}

TKAT

\section*{\(\triangle B C D E F\) is a regular hexagon with centre \(O\).}

The magnitude of a vector is the length of a vector. It is also known as the modulus
and is the absolute value of the vector. and is the absolute value of the vector.
\(\overrightarrow{O A}=a\)
\(\overrightarrow{O B}=b\)
(a) Find, in terms of a, the vector \(\overrightarrow{A D}\)
(b) Find, in terms of a and b , the vector \(\overrightarrow{A B}\)
(a) Write down as a column vector \(\overrightarrow{A B}\)
\[
\begin{equation*}
\binom{4}{-1}-\binom{3}{2} \tag{1}
\end{equation*}
\]
(i) (c) Find, in terms of a and b, the vector \(\overrightarrow{A F}\)
\(C\) is the point \((5,-2)\) and \(D\) is the point (2,1).
(b) Write down as a column vector \(\overrightarrow{C D}\)
\(\binom{2}{1}-\binom{5}{-2}\)

\section*{Year 11 Term 1 Maths Knowledge Organiser[F unit 19 - Congruence, similarity and vectors]}

Similarity - Two shapes are Similar when one can become the other after an enlargement, reflection, translation or rotation.

Enlargement - A type of transformation where we change the size of the original shape to make it bigger or smaller.

Scale Factor - The ratio between the scale of a given original object and a new object, which is its representation but of a different size (bigger or smaller).

Congruent - Two shapes are congruent if they have the same shape and size, or when one shape can be rotated or reflected to fit exactly on the other.

Vector - A vector is a quantity that has both a magnitude and a direction

Congruent shapes have all sides and angles equal.

\(\square\)
Similar shapes have all angles equal but one is an enlargement of the other.

> \(\frac{\text { small }}{\text { large }}=\frac{1}{2}=\frac{x}{5}\)

Write the ratio \(\frac{\text { small }}{\text { large }}\) for the lengths and the widths. Write an equation to solve for \(x\).

\section*{Year 11 Term 2 Maths Knowledge Organiser}

\section*{[H unit 19 - Proportions and graphs]}

\section*{Year 11 Term Maths Knowledge Organiser}
[F unit 20 - More algebra]
\begin{tabular}{|c|c|}
\hline CORE & COOD TO KNOM.. \\
\hline - A linear graph is a straight line & Types of Graphs \\
\hline \begin{tabular}{l}
- Quadratic, cubic and reciprocal graphs are curved \\
- A quadratic equation contains a term in \(x^{2}\) but no higher power. It can also have x and number terms.
\end{tabular} & \\
\hline \begin{tabular}{l}
- A cubic contains a term in \(x^{3}\) but no higher power. It can also have terms in \(x^{2}\) and \(x\) and number terms. \\
Simultaneous equations are equations that are true for both variables (letters)
\end{tabular} & \\
\hline
\end{tabular} both variables (letters)
- To solve a simultaneous equation graphically, look at the point where both straight lines intersect (cross) and write down that coordinate.
- To solve a simultaneous equation by the elimination method, add or subtract the equations to eliminate either the x or y terms.

A term is a number, letter, or a number and a letter multiplied together i.e. \(x, 3 a, 7 y^{2}\) are all terms
An expression contains letter and/ or number terms but no equal sign.
An equation has an equals sign, letter terms and numbers. You can solve it to find the value of the letter.
An identity is true for all values of letters
A formula has an equals sign and letters to represent different quantities. The letters are variables as their values can vary.

\section*{HOW TO....}

\section*{a Make a the subject of the formula \(v^{2}=u^{2}+2 a s\) \\ b Make. \(x\) the subject of the formula \(y=\frac{a x+b}{c}\)}
\[
a v^{2}=u^{2}+2 a 5
\]
\[
b y=\frac{a x+b}{c}
\]

\[
\begin{aligned}
& c y=a x+b-\text { Multiply both sides by } c . \\
& c y-b=a x-\text { Subtract } b \text { from both sides. } \\
& \frac{c y-b}{a}=x-\text { Divide both sides by a. } \\
& x=\frac{c y-b}{a}-\text { Re-wite in the form } x=\ldots
\end{aligned}
\]

\section*{Simultaneous Equations}
```

By elimination method

```
1. Two linear equations

Example
Example
Solve (i) \(2 x+y=5\)
\(\qquad\) Eliminate y by adding the equations
\(x=2\) \(x-y=1 \quad\) Putting value back into \(2^{\text {nd }}\) equation

\section*{Year 11 Term 3 Maths Knowledge Organiser [Foundation Revision]}

\section*{CORE GOOD TO KNOW... HOW TO.... TKATR}

Perimeter
Calculated by adding up the length of each of the sides.

\section*{Circumference of circle - Trd}

\section*{Area}

Square/Rectangle \(=\) length \(\times\) width
- Triangle \(=1 / 2 \times\) base \(\times\) height
- Trapezium \(=1 / 2 \times a+b \times\) height
- Circle - \(\pi r^{2}\)
- Measure in squared units, e.g. \(\mathrm{cm}^{2}\)

\section*{Volume}

Cube/cuboid \(=\) length \(\times\) width \(\times\) height
- Prism \(=\) area of cross section (front face) \(\times\) length
- Cylinder \(=\) area of circle (front face) \(\times\) length
- Measure in cubic units, e.g. \(\mathrm{cm}^{3}\).

Right Angle - \(90^{\circ}\) Angle
Angles on a straight line \(=180^{\circ}\)
Angles around a point \(=360^{\circ}\)
Angles in a triangle \(=180^{\circ}\)
Exterior angles in a polygon \(=360^{\circ}\)
1m

100 cm
\(\square\)

Expand \(3(x+4)\) Multiply what's inside by 3 \(3 x+12\)

Factorise \(5 x-20\) Find HCF and put in brackets \(5(x+4)\)

Solve \(3 x+4=40\) Use inverse operations to find value of x
\[
\begin{gathered}
-4 \quad-4 \\
3 x=36 \\
\div 3 \quad \div 3 \\
x=12
\end{gathered}
\]

\section*{Percent Change}

Percent Change \(=\frac{\text { New Value }- \text { Old Value }}{\text { Old Value }} \times 100 \%\)
f the result is positive, it is an increase. If the result is negative, it is a decrease.
\[
\left.\begin{array}{l}
\text { Increase } £ 50 \text { by } 60 \% . \\
\begin{array}{rl}
160 \% \times £ 50 & =1.6 \times £ 50 \\
& =£ 80
\end{array} \\
\text { Increase } £ 86 \text { by } 7 \% . \\
107 \% \times £ 86
\end{array}\right)=1.07 \times £ 86
\]

\section*{Year 11 Term 3 Maths Knowledge Organiser}
[Higher Revision]
```

